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FORMATIVE STUDY

Words for Referring to Visual Features
From the 277 visual questions we collected prior to the forma-
tive study, we identified the words that people use to refer to
the visual features of the charts. We complied these into word
lists and use them to detect mark words, visual attribute words
and visual operation words in Stage 2 of our pipeline. Here,
we include the word lists that we compiled (Figure 1).

Additional Analysis
In addition to the analysis of how often people ask visual/non-
visual questions, ask lookup/compositional questions, and
provide visual/non-visual explanations, we further analyzed
the questions from the formative study to determine which
visual elements of the charts people referred to when asking
questions or explaining their answers visually. Furthermore,
we analyzed if people provide visual explanations when an-
swering visual questions.

Visual Questions 43% of the visual questions included mark
words (e.g. ‘bar’, ‘line’). More visual questions referred to the
color attributes of the marks (54%) than the length attributes
of the marks (22%). 22% of the questions referred to the
elements on the axes (e.g. the axis itself, label, ticks).

Visual Explanations 87% of the visual explanations included
mark words. Unlike for visual questions, more visual expla-
nations referred to the dimension of the marks (42%) than to
the color attributes of the marks (30%). 13% of the questions
referred to the elements on the axes.

Explanations to Visual/Non-Visual Questions 60% of the ex-
planations to the visual questions were visual, whereas 50% of
the explanations to the non-visual questions were non-visual.
Visual explanations were slightly more common when the
questions were visual, and for both visual and non-visual ques-
tions, people provided visual explanations at least half of the
time.
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ADDITIONAL DETAILS FOR EXPLANATION GENERATION
We generate the visual explanations from the lambda expres-
sions via using a series of regex rules in Stage 3. Here, we
provide more information about the rules used for explanation
generation. For specific implementation details, please refer
to the released code.

Natural Language Conversion Rules
In Stage 3 step 1, our pipeline converts lambda expressions to
natural language using a small set of rules. Figure 2 shows a
set of rules for this process. Please refer to the released code
for specifics and precedence.

Redundancy Cleanup Rules
We remove two types of redundancies during redundancy
cleanup (Stage 3 step 3): (1) repeated mentions of field names
or values (e.g. “‘age’ of the greatest ‘age”’) or (2) unnec-
essary mention of field or the word ‘data’ (e.g. “‘Country’

‘China”’). Figure 3 lists some of the regex used in this process.
For the specific regex we use, please refer to the released code.

Encoding Application
In Stage 3 step 5, our pipeline applies the encodings to convert
references to field names and field values in explanations into
the visual attributes of the marks to generate visual explana-
tions.

Choosing Color Words Whereas people may use various color
names to describe a color they see, explanations need to be
clear and a small set of common color names is all that is
needed to distinguish the marks. Because the common color
names are better spread out throughout the hue-space than in
the RGB space, we use the HSL color space to assign names to
colors. In comparison, we use RGB color space for matching
color words to colors in the chart because RGB color space has
a naturally defined metric that allows distance comparisons to
different colors used in the chart, whereas the HSL color space
does not. We split the hue space into smaller slices according
to the color names given by WorkWithColor.com [1]. We split
the color ranges of the half-colors (e.g. red-orange, yellow-
green) into two halves and merged them with the closest hue
range, resulting in a total of eight colors (Figure 4a). For
lightness, we named colors with lightness greater than 87.5%
as ‘white’ and colors with lightness less than 12.5% as ‘black’.
We further split the lightness space and add the adjective ‘light’
when the lightness is between 75% and 87.5%, and ‘dark’ if it
is between 12.5% and 25%. For saturation, we name colors

‘gray’ if it has saturation less than 12.5%. If the light or dark



Figure 1. Word lists used in Stage 2 of our pipeline for marks of type ‘bar’ and ‘line’ (Extension of Figure 6 in the main paper). The list of words
referring to these marks (cyan), the list of words for referring to the visual attributes of the marks (orange) and the list of words for representing
operations on the marks (green).

Figure 2. Conversion rules from lambda expressions to natural language
(Extended version of Figure 9 in the main paper). The first column
shows the name of the rule, the second column shows the lambda expres-
sion and the third column shows the corresponding natural language
expression.

Figure 3. Redundancy cleanup rules for explanations. The first column
shows the original redundant expression, and the second column shows
the cleaned-up result.

shade of the color is often interpreted as a different color,
we specially defined the color name (e.g. ‘brown’ for ‘dark
orange’). Figure 4b shows the split for orange.

(a) Hue ranges (b) Saturation and lightness

Figure 4. How the colors are named in the HSL space. (a) We split the
hue space into eight color ranges. The example colors represent colors in
the center of the range with 100% saturation and 50% lightness. (b) For
each hue value, we split the saturation and lightness space into black,
white, light and dark versions of the color, and the color itself. Here, we
exemplify this with the color orange (with hue value 30◦. We use ‘brown’
instead of ‘dark orange’ because it is a more commonly used color name.

Word Rearrangement Simply applying the encodings may
result in natural language expressions that could be made
smoother by rearranging the words. For example, “length of

‘China”’ can be smoothened by adding the mark word into
“length of the bar for ‘China”’. In order to do so, we apply a
series of regex rules to the resulting explanations (Figure 5).
Please refer to our code for the implementaion details as well
as the exact precedence.

ADDITIONAL RESULTS: EXPLANATIONS
Because the explanations generated by our system in stage 3
are templated conversions of Sempre [4, 3]’s lambda expres-
sions [2], the generated explanations are reasonable as long
as the lambda expression output corresponds to meaningful
operations. Here, we share some less meaningful explana-
tions generated because the original lambda expression did
not represent meaningful operations on charts (Figure 6).



Figure 5. Word rearrangement rules for visual explanations. First col-
umn shows the original expression that can appear in the visual explana-
tions and the second column shows the reworded result. The bracketed
expressions with two options indicate word choice when the chart is a
bar chart (left) and when the chart is a line graph (right).

Figure 6. Examples of less meaningful explanations generated by our
pipeline. The first row shows the question, and the second row shows the
answers generated by our system (red indicates incorrect) and the cor-
rect answer. The third row shows the lambda expression generated by
Sempre and the last row shows the explanation generated by our system.

For Q1, our pipeline generates an explanation that simply
states the answer ‘Glabron’ without any operations on it. Ob-
serving the labmda expressiom, our system finds the row of
the underlying data table with the ‘variety’ value equal to

‘Glabron’, and obtains the ‘variety’ value of that row, which
is equivalent to just reporting ‘Glabron’. Because the opera-
tions in the lambda expression are very redundant, our system
results in removing all the redundant operations and ends up
giving the meaningless explanation.

For Q2, our pipeline generates an explanation with the word
‘index’, which is not defined with respect to the chart. This
is because the lambda expression operates on the underlying
data table and not the chart itself. The lambda expression indi-
cates that it read the variety value ot the last row of the table,
which has no correspondence in terms of the chart because the
ordering of rows in the table does not necessarily match that
of the ordering of the ‘varieties’ We leave better incorporation
of such table-specific operations as future work.

ADDITIONAL RESULTS FOR USER STUDY
In addition to the Likert scale measurements of transparency,
trust and usefulness, we also measured how accurately partici-
pants determined the correctness of the provided answers, and
how quickly the participants so (Table 2 in the main paper).

Accuracy
We did see higher accuracies when we provided answers and
explanations generated by our system (98.8% with visual ex-
planations and 95.0% with non-visual explanations) than when
we provided answers generated by humans (91.3% with expla-
nations and 87.5% without explanations). While this could be
due to our explanations, this could also be due to the wrong
answers by our system being more conspicuous than wrong
answers generated by humans. Further study is required to
determine the contributions of these factors.

Time Measurements
Although we measured time taken to determine the correct-
ness of the provided answers, we did not see a significant
improvement in completion times when we presented our vi-
sual explanations (µ = 26.7s, σ = 30.5s) compared to when
we presented no explanation (µ = 26.2s, σ = 28.3s, t(157) =
0.11, p = 0.46), human-generated explanations (µ = 26.0s, σ

= 27.5s, t(157) = 0.16, p = 0.44), or our non-visual explana-
tions (µ = 23.7s, σ = 21.2s, t(157) = -0.72, p = 0.76). Instead,
we saw large variations in completion times in all conditions.
This is probably because we did not instruct the participants
to optimize for time. Other factors could be because the time
required to perform the operations to confirm the answers was
much greater than the time required to parse the provided an-
swers and explanations with respect to the provided charts.
Additional studies could help understand how explanations
affect the speed at which people parse information.
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