
Answering Questions about Charts and Generating
Visual Explanations

Dae Hyun Kim
Stanford University
Stanford, CA, USA

dhkim16@cs.stanford.edu

Enamul Hoque
York University

Toronto, ON, Canada
enamulh@yorku.ca

Maneesh Agrawala
Stanford University
Stanford, CA, USA

maneesh@cs.stanford.edu

ABSTRACT
People often use charts to analyze data, answer questions
and explain their answers to others. In a formative study, we
find that such human-generated questions and explanations
commonly refer to visual features of charts. Based on this
study, we developed an automatic chart question answering
pipeline that generates visual explanations describing how the
answer was obtained. Our pipeline first extracts the data and
visual encodings from an input Vega-Lite chart. Then, given
a natural language question about the chart, it transforms ref-
erences to visual attributes into references to the data. It next
applies a state-of-the-art machine learning algorithm to answer
the transformed question. Finally, it uses a template-based
approach to explain in natural language how the answer is
determined from the chart’s visual features. A user study finds
that our pipeline-generated visual explanations significantly
outperform in transparency and are comparable in usefulness
and trust to human-generated explanations.
Author Keywords
Question answering; Visualization; Explainable AI;

CCS Concepts
•Human-centered computing → Natural language inter-
faces;

INTRODUCTION
Using visualizations to analyze data, answer questions, and
explain how the answer was obtained, is at the heart of many
decision-making tasks. However, performing such complex
analytical tasks with visualizations is not always easy. Users
often need to answer compositional questions that require
combining multiple complex operations such as retrieving a
value from the chart, finding extreme values, comparing and
aggregating values, or calculating sums and differences of
values. Consider the bar chart in Figure 1 and the question

“For which religion did the most chaplains think that religious
extremism is common?” To answer this question, users need to
visually compare the values represented by orange bars, find

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHI ’20, April 25–30, 2020, Honolulu, HI, USA.
Copyright is held by the author/owner(s).
ACM ISBN 978-1-4503-6708-0/20/04.
http://dx.doi.org/10.1145/3313831.3376467

Figure 1. Questions about a chart from a Pew research report [3]. Q1 re-
quires a value lookup on the data in the chart and Q3 requires a lookup
on the legend. Q2 is compositional as it requires multiple operations
including value lookup and comparisons. Our automatic chart ques-
tion answering pipeline answers all three questions correctly (marked
in green) and gives correct explanations of how it obtained the answer,
whereas Sempre [43, 59], a state-of-the-art table question answering sys-
tem, gets all three wrong (marked in red).
the longest one and then lookup the corresponding religion; in
this case it is ‘Muslims’.

As users are analyzing a chart, they regularly pose questions by
referring to visual features of the chart including the graphical
marks (e.g. bars) and their data encoding visual attributes (e.g.
width) [52, 53, 29]. For example, in the course of analyzing
the bar chart in Figure 1, a user might ask “Which religion has
the longest orange component?” This is a visual version of our
earlier question, and while it remains compositional, because
it references visual features of the chart, it is shorter and
more directly suggestive of the operations users must perform
to answer it. Nevertheless, answering such compositional
questions, whether they are visual or non-visual, can be time-
consuming and mentally taxing as users must perform multiple
complex operations.

To obtain a better insight into how people naturally ask ques-
tions about charts, we conducted a formative study in which
we collected 629 human-generated questions for 52 real world
charts along with 748 human-generated explanations. We then
categorized the questions along two orthogonal dimensions;
(1) lookup (i.e. requiring a single value retrieval), or composi-
tional (i.e. requiring multiple operations) and (2) visual (i.e.
referencing visual chart features) or non-visual. We find that
people frequently ask compositional questions (70%), regu-
larly ask visual questions (12%), and that visual explanations
are especially common (51%).

Can we design a tool to automatically answer such natural
language questions about charts? Automatic question answer-

ing would benefit users in several ways. It would significantly
reduce the time and mental effort by performing complex op-
erations such as retrieval, comparison and aggregation (sum,
average) on behalf of users. Such a tool could quickly and
accurately retrieve data values from visual attributes that are
perceptually difficult to decode (e.g. size, brightness). More
importantly, introducing a natural language interface into the
data analysis workflow would lower the threshold of ability
required to analyze data using charts and graphs. It could
enable people who have not been formally trained in data
analysis tools and visualization literacy to get answers to their
questions. However, for users to rely on such an automated
tool, it is critical that the tool be able to transparently explain
how it obtains the answers [52]. Moreover, our formative
study suggests that the most effective explanations are visual
because they describe how the answer is extracted from the
visual features of the chart. Yet, no previous work on auto-
matic question answering for charts [29, 27, 14, 47, 28] has
provided explanations for their answers.

In this paper, we present an automatic pipeline for answer-
ing natural language questions about charts and generating
such visual explanations. Our approach builds on Sempre [43,
59], a question-answering system for relational data tables
that focuses on answering compositional, non-visual ques-
tions. We significantly extend Sempre to answer questions
about charts and also generate corresponding visual explana-
tions. Our pipeline works with both lookup and compositional
questions as well as visual and non-visual questions. The key
idea of our approach is to take advantage of the visual data
encoding structure of an input chart in Vega-Lite [50] format
– a programmatic representation that explicitly describes the
encodings that map data to mark attributes – to accurately an-
swer visual questions and to generate the visual explanations.

We evaluate our question-answering pipeline on the corpus of
629 chart-question pairs we gathered in our formative study.
We find that our pipeline correctly answers 51% of all the
questions in our corpus, while Sempre alone can only answer
39% of the questions correctly, a difference of 12%. For visual
questions, our improvement is even larger at 53% and even for
non-visual questions, our pipeline outperforms Sempre by 6%.
Overall, these results suggest that information about the visual
encoding structure of a chart is very useful for automatic chart
question answering. Finally, we conduct a user study which
finds that our pipeline-generated visual explanations are signif-
icantly more transparent than human-generated explanations
while remaining comparable in usefulness and trust.

RELATED WORK
Our work is grounded in three main areas of prior work; (1)
Natural language interactions with visualization, (2) Auto-
matic question answering and (3) Explainable AI.

Natural Language Interactions with Visualization
Natural language interfaces for visualizations have received
considerable attention recently. Typically, these interfaces
respond to natural language queries by either creating a new
visualization (e.g. DataTone [22]) or by highlighting answers
within an existing visualization (e.g. Eviza [52], Evizeon [25]).

Some systems enable follow-up queries with support for prag-
matics to consider context from past queries [17, 57, 18, 25].
Other systems give users feedback describing how the system
interprets a query and allow users to correct misunderstand-
ings [22, 52, 25, 54]. However, all of these systems focus
on developing interfaces that work with simple natural lan-
guage queries to generate visual output. In contrast, our work
focuses on developing algorithms for answering visual and
compositional natural language questions with text output.

A few researchers have focused on automatically connect-
ing charts with text that refers to it in the surrounding docu-
ment [31, 30, 11]. Kong et al. [31] present a crowdsourcing
framework for extracting such references between surround-
ing text and chart elements as well as an interactive document
browser that visualizes the references. Kim et al. [30] present
a fully automated algorithm for finding references between
surrounding text and a table as well as an interactive docu-
ment viewer that similarly highlights the extracted references.
Badam et al. [11] automatically parse documents to identify
various text-based similarity relationships (e.g. stylistic simi-
larity, semantic similarity) between tables and the surrounding
text. In contrast to such natural language reference finding,
our work focuses on answering natural language questions and
explaining how the answers were determined.

Researchers have also attempted to automatically generate
captions for charts [40, 15]. For example, Mittal et al. [40]
apply a planning-based approach to generate captions. Chen et
al. [15] propose an attention-based mechanism for generating
natural language captions for charts. Instead of explaining
the chart itself, our pipeline explains how it uses the chart to
answer the question.

Automatic Question Answering
Automatic question answering using recent advances in ma-
chine learning [21] has been investigated in a variety of data
domains, ranging from document collection [45, 58, 55] to
data tables [43, 59, 34, 9, 60] to image collections [10, 36, 29,
27]. Question answering with data tables is the most relevant
research to our work, since the underlying data of the vast
majority of visualizations can be represented as tables. Sem-
pre [43, 59] is a method for answering compositional questions
with semi-structured tables. Their system translates the natural
language question into a logical query and executes the query
on the table to generate the answer. Researchers have also
addressed the table question answering task by applying neu-
ral networks [32] and reinforcement learning techniques [34,
9, 60]. In our work, we adapt the semantic parsing model of
Sempre [43, 59] to our problem in which questions regularly
refer to visual features (e.g. marks and their visual attributes)
of charts. We also extend this work to provide explanations
for the answers it produces.

Question answering with images is also an active research
topic [10]. While much of this work focuses on answering
natural language questions about photographs, a few research
groups have developed question answering techniques for
visualizations and scientific figures [29, 27, 14, 47, 28]. All
of these systems treat the input chart as an image and focus
on applying computer vision techniques to obtain the answer.

In contrast, we consider the structure of the chart (e.g. how it
encodes the data) to answer to the natural language question
and to provide an explanation for it. Unlike existing systems,
we also develop a corpus of charts from real-world sources and
we gather crowdsourced natural language questions-answer
pairs for each of them.

Explainable AI
While AI and machine learning have seen dramatic break-
throughs in the last few years, they usually produce black-box
models; it is difficult to understand why or how a model makes
a particular decision or produces an answer. Recent surveys
document a variety of techniques designed to address the
lack of interpretability of machine learning models [19, 7, 42].
They suggest that an explainable model describes the relation-
ship between the system’s input and its output; it can describe
the mechanisms through which it makes decisions [7].

Researchers have focused on either providing instance-based
explanation for a single prediction [56, 48, 49, 8] or explaining
the overall behavior of the predictor [12, 20]. For example,
saliency maps provide instance-based visual explanations of
image classifiers by highlighting regions in an input image
determining the output of a convolutional neural network clas-
sifier [56]. Lei et al. [33] present a method for sentiment pre-
diction in review text, where it automatically extracts phrases
from the review that leads to a particular prediction score. Our
work also focuses on instance-based explanation as it describes
how it produces an answer given an input question-chart pair.
However, rather than extractive methods that highlight part of
the input data, we develop a template-based natural language
generation method that explains how the model reaches the an-
swer by analyzing the chart. Our system is the first to generate
explanation for chart question answering.

FORMATIVE STUDY
To learn how people naturally ask questions, extract answers
and explain their answers when they encounter charts, we
conducted a formative study. We gathered a corpus of charts
from multiple real-world sources, and asked crowdworkers to
write natural language questions, provide answers and explain
their answers. We then manually analyzed the resulting data to
understand (1) how often people ask lookup and compositional
questions and (2) how often they refer to visual features for
the charts in their questions and explanations.

Gathering Charts, Questions, Answers and Explanations
Our corpus includes 52 charts, gathered from four different
sources; (1) the Vega-Lite Example Gallery [5], (2) charts in
Pew Research Reports as collected by Kong et al. [31], (3) D3
charts we found across the Web, and (4) charts constructed
from tables found in the WikiTableQuestions dataset [43]. In
total, our corpus includes 47 bar charts (32 simple, 8 grouped,
7 stacked) and 5 line charts. We focus on these two chart types
because, as Battle et al. [13] have shown, they are two of the
most common types of charts available on the Web.

We asked crowdworkers from Amazon Mechanical Turk to
consider a single chart, write 5 natural language questions
about it, answer 10 questions about it including their own

Table 1. Counts and percentages of the types (lookup/compositional,
visual/non-visual) of natural language questions and explanations
crowdworkers generated for our set of 52 charts.

and provide explanations for their answers. We then manu-
ally reviewed the responses and removed questions that were
not answerable from the chart, as well as explanations that
carried no information about how the worker obtained the
answer from the chart (e.g. “I got it from the chart”). This
process generated a total of 629 questions, 866 answers and
748 explanations for the 52 charts.

Analysis
We analyzed the crowdworker responses to differentiate com-
positional questions from lookup questions as well as visual
versus non-visual questions and explanations (Table 1).

We find that 70% of the questions are compositional, while
the remaining 30% are lookups. Compositional questions of-
ten ask about extrema (38%), differences between two data
values (22%), and the sum of multiple values (7%). An addi-
tional 12% of the compositional questions require performing
multiple compositional operations to arrive at the answer (e.g.
difference of the maximum and the minimum). People also
regularly ask visual questions (12%) that refer to visual fea-
tures of the chart. Visual questions tend to be lookups (68%)
while non-visual questions tend to be compositional (75%).

Most importantly, we find that people frequently provide vi-
sual explanations (51%), which describe the process of extract-
ing an answer from the visual features of a chart. Consider Q2
in Figure 1 where the correct answer is ’Muslims’. A person
might visually explain how they got the answer by reporting

“Muslims have the longest orange bar in the chart.” In contrast,
a non-visual explanation such as “Muslims are about 57%
Common, more than any other Religion,” only refers to the
data and does not describe the process of extracting the data
from the visual features of the chart. Thus, it is less thorough
and this lack of completeness may explain why non-visual ex-
planations are slightly less common than visual explanations.

Additional Collection of Visual Questions
To better understand how visual questions are posed we also
collected a set of 277 visual questions about charts from our
collegues. We analyzed these questions to to identify the
lexical and the syntactic structures that people typically use
to refer to marks and visual attributes in visual questions. We
use the results of this analysis for converting visual questions
to non-visual questions in Stage 2 of our pipeline.

METHOD
Our question answering system takes a chart and a natural
language question as input and outputs the answer to the ques-
tion along with an explanation (Figure 2). Our approach is to
adapt Sempre [43, 59], a question answering algorithm that
works with relational data tables instead of charts. In Stage 1
of our pipeline, we extract the visual encodings that map data

Figure 2. Our question answering pipeline for charts operates in three
stages. In Stage 1, it extracts visual encodings and the data from the
chart and then restructures the data table. In Stage 2, it transforms the
input question, replacing any visual references to chart elements with
non-visual references to data. Then, it passes the restructured data table
and the transformed question to Sempre [43, 59], a state-of-the-art table
question answering system which generates the text answer. Finally, in
Stage 3, it generates a natuaral language explanation describing how the
answer was generated from the chart.

Figure 3. Vega-Lite specification for the chart in Figure 1. This specifi-
cation includes a block of data “transforms” (orange keyword text) that
filter the data to specific years and questions. The “mark” (blue key-
word) is specified as ‘bar’, and the visual “encodings” (pink keyword)
for x-position, y-position, and color of the marks are given explicitly.

(a) Flat data table (b) Unfolded data table
Figure 4. (a) Data extracted from the chart in Figure 1 is initially a
flat relational data table. Each row represents one mark in the chart.
(b) We unfold the table by choosing the ‘Response’ column as a pivot,
turning each of its data values into column headers and then re-aligning
the data in the other columns. In (a), each ‘Religion’ and ‘Response’
value appears multiple times but only once in (b) reducing the size of the
table by almost a factor of two. Moreover, in (b), looking up a specific
(‘Religion’, ‘Response’) pair such as (‘Hindus’, ‘Not common’) requires
looking for the value at the intersection of the pair rather than searching
through all the rows corresponding to Hindus as in (a).

to the attributes of visual marks (e.g. height of a bar mark,
color of lines, etc.). We also extract the data itself from the
input chart. In Stage 2, we use the extracted encodings to
transform the input question, replacing all references to visual
marks and their attributes with references to data fields and
data values. This transformation converts a visual question
into a purely non-visual question. Next, we input the unfolded
table and the transformed, non-visual question into Sempre to
generate the answer. Sempre converts the input natural lan-
guage question into a logical query called a lambda expression,
and then executes the query on the data table to generate the
answer. Finally, in Stage 3, we convert the lambda expression
from Sempre into a visual explanation for the answer, using
template-based translation.

Stage 1: Extract Data Table and Encodings
A chart is typically constructed by encoding (or mapping) the
data to some visual attributes (e.g. position, area, color) of
graphical marks (e.g. circles, rectangles) [41]. Vega-Lite [50]
is a chart specification language that explicitly describes how
input data should be transformed (e.g. aggregating it, re-
scaling it) to make it suitable for visualization, and how the
transformed data should be encoded using visual attributes of
the marks (Figure 3).

In Stage 1 of our pipeline, we convert an input chart into a
Vega-Lite specification and then extract encodings as well as
the transformed data. Finally, we unfold the extracted data
into a data table. We first describe how our extraction process
works for a Vega-Lite chart and then explain how we convert
other types of input charts into the Vega-Lite format.

Extraction from Vega-Lite Charts
Extract encodings. Given a Vega-Lite chart specification as in
Figure 3, we can directly extract the encodings by looking for
encoding keyword. In this example, the y-position attribute
of a bar mark encodes a nominal data field named ‘Religion’,
while the length attribute of the bar encodes a quantitative
data field named ‘Percentage’. Similarly, the color attribute
encodes a nominal data field named ‘Response’ that takes the
value � #EE8426 for the response ‘Common’ or the value �
#5376A7 for the response ‘Not common’.

Extract data. To extract the data from the chart, we first run
the Vega-Lite interpreter and apply all data transformations in
the chart specification. We then capture the transformed data
from the Vega-Lite interpreter just before it is rendered into
a chart. Specifically, we instrument the chart specification to
write out the data immediately after the last transformation.
The resulting data is in the form of a flat relational table where
each row represents a single mark in the chart, or equivalently
a single data tuple (Figure 4a).

Unfold data table. Table question answering systems like
Sempre are trained using human readable tables which are
often structured in an unfolded format in which a data tuple
is comprised of a row header, a column header and the data
value at their intersection (Figure 4b). Human readers typically
prefer such unfolded tables to the corresponding flat relational
tables because they are more compact and thereby reduce the
cognitive effort required to retrieve information.

Sempre has been trained on a large set of tables from the
WikiTableQuestions [43] dataset where manual inspection
shows that many of the tables are unfolded. Therefore, we
unfold our flat relational data tables into a form that is closer
to Sempre’s training data. Specifically, we implement Raman
and Hellerstein’s [46] unfold operation as follows. We first
check that the extracted data table has a pivot column whose
data values will be transformed into column headers. The pivot
column must contain data values that repeat with the same
frequency greater than one. In our example, the ‘Religion’
column repeats each religion with a frequency of 2, while the

‘Response’ column repeats each response with a frequency of
10 – each response appears once for each of the 10 religions in
the dataset. We choose the column with the largest frequency

as the pivot and re-align the data values in the other columns
to form the unfolded table (Figure 4b). The resulting unfolded
data table is passed as input to Sempre.

Converting Charts into Vega-Lite
While our extraction procedures are designed for charts spec-
ified using Vega-Lite, we can handle other forms of charts
by converting them into the Vega-Lite format. For visualiza-
tions created using D3.js [2], we apply the D3 deconstructor
of Harper and Agrawala [23, 24] to automatically convert
them to Vega-Lite. The most prevalent representation of charts
today is a bitmap. For such chart images, we first use ReVi-
sion [51] to extract the data and the marks and then manually
add the visual encodings to convert the chart into a complete
Vega-Lite specification. We leave it to future work to incorpo-
rate alternate methods for extracting data, marks and visual
encodings [16, 44] from bitmaps of charts.

Stage 2: Visual to Non-Visual Question Conversion
In Stage 2, we transform an input question which may refer
to visual aspects of the chart such as its marks and visual
attributes, into a non-visual question that only refers to the
data depicted in the chart. For example, consider the chart
in Figure 1 and visual question Q2, “Which religion has the
longest orange component?” Our goal is to convert this visual
question into the corresponding non-visual question, “Which
religion has the most Percentage of Common Response data?”

The visual version of the question uses the word ‘component’
to refer to marks (bar segments) and the word ‘orange’ to refer
to a value (orange) of the visual attribute (color) of the marks.
The word ‘longest’ refers to performing an argmax operation
on the visual attribute (length) over the marks, and we call
such operations on visual attributes visual operations. Our
approach identifies references to marks, visual attributes and
visual operations in the question and then converts them to
references to the data and operations on the data to build the
the non-visual question in a sequence of 6 steps (Figure 5).

Step 1: Mark detection. The first step is to detect all words
referring to graphical marks in the chart. Our approach is to
check whether each word in the question appears in a list of
mark words that we manually built in a one-time pre-process
from our analysis of the additional set of visual questions we
collected in the formative study (Figure 6 cyan). For instance,
one may refer to a bar in a stacked bar chart as a ‘component’,

Figure 5. Six steps used to convert the visual question (Q2 in Figure 1)
into a non-visual question. The system detects ‘component’ as a refer-
ence to the bar marks, it detects ‘orange’ as a visual attribute word, and
it detects ‘longest’ as a visual operation word. It rewrites these words
and outputs the rewritten non-visual question.

Figure 6. Word lists used in our pipeline for marks of type ’bar’. The
list of alternative words for referring to ’bar’ marks (cyan). The list of
alternative words to refer to visual attributes of ’bar’ marks (orange).
The list of visual operations and the alternative natural language word
(e.g. rightmost, bottommost, wider, narrower) corresponding to each
one (green) In this case the list also includes a visual attribute (e.g. xLo-
cation, height) that the visual operation applies to. The operations are
given at the top level and the visual attributes they operate on are given
in the second level. The word lists for line charts are included in the
Supplemental Materials.

‘portion’ or ‘segment’ and we include these words in the list
for bar marks. Thus for the question “Which religion has the
longest orange component?”, we detect the word ‘component’,
as referring to the bar marks in the stacked bar chart (Figure 5).

Step 2: Dependency parsing. In the second step, we identify
a set of words describing each graphical mark based on the
grammatical structure of the question. We start by applying
the Stanford CoreNLP dependency parser [37, 26] to obtain
a parse tree that encodes phrase-level dependency structure.
For instance, in the dependency tree for our example question
(Figure 7), the word ‘orange’ is an adjectival modifier amod
for mark word ‘component’.

To obtain the words describing each mark, we find the tree
node for each mark word in the question and traverse outwards
following edges to its parents and children in breadth first
order. We retain only the words corresponding to the following
set of dependency labels: acl, amod, compound, conj, dep,
dobj, nmod, and nsubj. We obtained this list by analyzing the
complete set of dependency labels [4] along with our sample of
additional visual questions collected in the formative study and
noting that these labels best captured the visually descriptive
words for each mark.

For our example (Figure 7), we traverse the tree starting at the
mark word ‘component’ and add the amod words ‘longest’ and

‘orange’ to the list of descriptive words, but we do not add the
det word ‘the’. We would also traverse up the tree adding
the parent word ‘has’ with the relation dobj and then down
through its children adding the nsubj word ‘religion’, but not
the det word ‘Which’. Thus, for the mark word ’component’
we obtain the following set of descriptive words ‘religion’,
‘has’, ‘longest’, and ‘orange’ as shown in Figure 5.

Questions often use color words to refer to marks without
including a mark word. Thus, if the question contains a color
word, we always add it to the list of descriptive words.

Figure 7. The dependency tree generated by the Stanford CoreNLP de-
pendency parser for the question “Which religion has the longest orange
component?”. Words comprising a noun phrase have the same parent
noun in the tree and the tree provides a dependency relationship label
for each edge (e.g. amod is an adjectival modifier, det is a determiner,
nsubj is a nominal subject). In this case, the word for the visual attribute

‘orange’ (orange) and the word for the visual operation ‘longest’ (green)
are adjectival modifiers (amod) of the mark word ‘component’ (cyan)

Step 3: Visual attribute detection. We next identify all the
visual attribute words in the list of descriptive words. Our ap-
proach is similar to the approach in step 1 for mark detection.

As a one-time pre-process, we built a list of attribute words
for each mark type by analyzing our sample of example visual
questions. In this analysis, we noticed that the same word
can refer to a different visual attribute depending on the mark
type (e.g., the word ‘height’ refers to the ‘length’ of a bar in a
vertical bar chart whereas it refers to the ‘y-position’ of a point
in a line chart), so we created a separate list of visual attribute
words for each mark type. The field visual_attribute in
Figure 6 (labeled in orange) shows an example of the alterna-
tives word list for visual attributes of bar marks.

We next filter the complete visual attributes list to just the
ones that appear in the visual encodings we extracted from
our chart in Stage 1. Then to identify which words in our
descriptive words list refer to visual attributes, we iterate over
each descriptive word and find the closest match in our filtered
visual attributes list. Since there are lots of ways to describe
visual attributes, we use a word2vec-based synonym finding
approach to detect a match. Specifically, for each descriptive
word and each filtered visual attribute word, we lookup the
300-dimensional word2vec vector generated by the pre-trained
model of Mikolov et al. [39] trained on the Google News
dataset [1]. We then compute the cosine similarity between
their word2vec vectors and accept the best similarity match
above a threshold τ (empirically set to 0.75).

Questions sometimes contain descriptive words referring to
a color (e.g. ’orange’, ’red’, ’blue’). Such color words are
generally ambiguous as the word ’red’ may refer to a range
of different RGB values. Thus, whenever we encounter a
descriptive color word, we first lookup the descriptive word
in the text color names of the X11 color list [6] to obtain the
corresponding RGB hex code. We then consider any encoding
involving the color attribute, and examine all the RGB values
the attribute takes within the chart. Finally, we replace the
color word in the question with the RGB hex code that appears
in the chart and is closest (in Euclidean RGB distance) to the
X11 RGB hex code. In our example, the descriptive word
‘orange’ yields the X11 hex code � #FFA500 and of the two
colors � #EE8426 and � #5376A7 that appear in the chart

(Figure 1), it is closest to the former. Therefore, we replace
the word ’orange’ with � #EE8426 as shown in Figure 5.

Step 4: Visual operation detection. In step 4, we identify all
the visual operation words in our remaining list of descriptive
words. As in steps 1 and 3, we performed a one-time pre-
process to build lists of alternative visual operation words (e.g.
longest, narrowest, etc.). Each such visual operation word (e.g.
tallest) implies performing an operation (e.g. argmax) on a
specific visual attribute such as the height of a mark. There-
fore, our visual operations word list maintains an (operation,
attribute) pair for each visual operation word (Figure 6 green).
To match a descriptive word to the visual operation words, we
use the word2vec approach we used in step 3. In our example,
we detect ‘longest’ as a visual operation word and interpret it
as the visual operation (argmax, width) as shown in Figure 5.

Note that we identify simple questions about the encoding (e.g.
“What is blue depicting?”) by checking if the input question
only refers to one visual feature or attribute of the chart and
does not refer to a mark, data or visual operation. In such
cases, we directly use the encodings we identified in Stage 1
to answer the question (e.g. “Not Common”), bypassing the
rest of Stage 2.

Step 5: Apply encodings. In step 5, we use the encodings ex-
tracted in Stage 1 to replace the words corresponding to visual
attributes and visual operations with words corresponding to
data fields and data values. Specifically, we replace visual
attribute words to the corresponding data field it encodes as
given in the encoding. For specific visual attribute values like
the orange color � #EE8426 we extracted in the step 3, we
replace the attribute value with the corresponding data values
– in this case the response ‘Common’. For visual operation
words, we lookup the corresponding (operation, attribute) pair
and replace the visual attribute with the corresponding data
field based on the corresponding encoding. For example, given
the visual operation word ‘longest’, we lookup the (argmax,
width) pair, then find the encoding for the width attribute in
the Vega-Lite specification and finally replace the attribute
width with the corresponding data field ‘Percentage’ from the
encoding. Thus, we interpret the operation argmax as acting
on the data field ‘Percentage’ (Figure 5).

Step 6: Natural language conversion. In the final step, we
convert our question into a non-visual natural language ques-
tion suitable for input into Sempre, by rewriting words rep-
resenting marks, visual attributes and visual operations using
natural language equivalents. Because a mark represents a
piece of data, we rewrite all mark words with the generic noun

‘data’. In Step 5, we converted the the visual attribute words
into a corresponding data field or data value and we consider
these as already in natural language. In our example, ‘orange’
has already been converted into the data value ‘Common’. If
as in this case the attribute word refers to a data value, we ap-
pend the corresponding data field name to indicate the context
in which the data value should be interpreted – in this case
we append the data field name ’Response’ to the data value
’Common’. Finally, if the attribute word is used as a noun, we
add the word ‘value’ to force the resulting conversion into a
noun. For the visual operation words, we replace the opera-

Figure 8. Steps for generating an explanation from the lambda expres-
sion given by Sempre for the input question “Which religion has the
longest orange component?” (Q2 in Figure 1). The system first converts
the lambda expression generated by Sempre into a non-visual natural
explanation. It then converts the non-visual explanation to a visual ex-
planation by applying the visual encodings.

Figure 9. Rules for converting operations in lambda expressions to natu-
ral language for some of the common operations. First column shows the
name of the rule, the second column shows the labmda expression and
the third column shows the corresponding natural language expression.
We include more rules in the Supplemental Materials.

tion word pairs e.g. (argmax, ‘Percentage’) with the natural
language equivalent of the operation while removing pair nota-
tion e.g. ’most Percentage’. Thus, the input question “Which
religion has the longest orange component?” is rewritten as

“Which religion has the most Percentage Common Response
data?” While the non-visual question is not completely flu-
ent, together with our unfolded data table it contains enough
information for Sempre to answer it correctly: “Muslims”.

Stage 3: Explanation Generation
In Stage 3, our pipeline generates a visual explanation describ-
ing how the answer was extracted from the chart’s visual fea-
tures. Our approach takes the logical query lambda expression
Sempre builds to answer the question and uses template-based
natural language generation to produce the explanation.

Consider the example question “Which religion has the longest
orange component?” (Q2 in Figure 1). In Stage 2, we generate
the corresponding non-visual question “Which religion has
the most Percentage Common Response data?”. Sempre then
converts this question into the lambda expression

argmax(R[Religion].Row,

R[λx[R[Number].R[Common].Religion.x]]),

which it executes on the unfolded table we generated in Stage 1
to produce the correct answer ‘Muslims’. Our goal in Stage 3 is
to convert this lambda expression to the natural language visual
explanation “I computed the ‘Religion’ of the longest orange
bar.” We use a 5 step pipeline to generate the explanation
(Figure 8).

For questions about the encoding that we detected in step
4 of Stage 2 (e.g. “What is blue depicting?”), we directly
generate the explanation using the template “I looked up what

[encoding] represents by looking at the [label on the x-axis /
label on the y-axis / legend],” based on whether the encoding
is specified by the x-axis, the y-axis or the legend. We do not
process such questions through the steps in this stage.

Step 1: Natural language conversion. As presented by
Liang [35], lambda expressions include a limited set of opera-
tions and generation rules. Thus, we build a small set of rules
to convert lambda expression to natural language (a subset of
our rules is shown in Figure 9). For our example, our pipeline
applies the argmax, type, lookup, and row rules to convert
the input lambda expression to “‘Religion’ of data with the
greatest ‘Common’ of ‘Religion’.”

Step 2: Implicit field recovery. Sometimes, a field name be-
comes implicit during the table unfolding in Stage 1, and we
maintain the field name as an auxiliary annotation to the table.
For instance, during the unfolding process in Figure 4, we
keep the field name ‘Percentage’ as auxiliary annotation on
each of the cells in the ’Common’ and ’Not common’ columns.
In this step we add this implicit annotation to the reference
to the value ‘Common’ of the pivoted field in the explanation,
resulting in “‘Religion’ of data with the greatest ‘Percentage’
of ‘Common’ of ‘Religion’.”

Step 3: Redundancy Cleanup. Our pipline next removes any
redundant information using a series of regex rules. In our
explanation, we see that the information about ‘Religion’ is
repeated twice at the beginning and end of the expression.
Moreover, “‘Religion’ of data” does not carry more infor-
mation than just ‘Religion’. Both of these issues make the
explanation difficult to understand. The cleanup step removes
these extraneous words and yields “‘Religion’ with the great-
est ‘Percentage’ of ‘Common’.” We include the specific regex
rules in the Supplemental Materials.

Step 4: Sentence Completion. Next, we generate a non-visual
explanation by adding the pronoun ‘I’ and a verb that describes
the last operation performed by the system. For the verb, we
use ‘looked up’ for lookup operations, ‘counted’ for counting
operations, and ‘computed’ for all other operations. In our
example, we add “I looked up” to the beginning of the
explanation to complete a non-visual explanation.

Step 5: Encoding application. To make the non-visual expla-
nations visual, we apply the visual encodings obtained from
Stage 1. For references to values of fields that are encoded as
colors, we convert them to color words directly. For references
to data fields encoded as other visual features, we check the
surronding words to see if there is an operation performed on
the visual attribute, and convert it to a visual attribute word or
a visual operation word using the word lists we used in Stage
2 (Figure 6). We add a mark word and position the converted
visual words so that they modify the mark word. In our exam-
ple, we convert the value ‘Common’ to the color ‘orange’. For
the reference to the field ‘Percentage’, we use the neighboring
word ‘greatest’ and the visual encodings to recognize that this
is an operation argmax on the visual attribute width, and use
the visual operations word list to convert this to the visual op-
eration word ‘longest’. Rearranging these words so that they
modify the mark word ‘bar’ yields “ I looked up ‘Religion’ of

Figure 10. Accuracy of our pipeline (blue) compared to a baseline ver-
sion of Sempre (orange) for questions of each type (visual/non-visual and
lookup/compositional).

Figure 11. Accuracy of our complete pipeline (blue) compared to the
pipeline with the data table unfolding of Stage 1 only (purple) and the
question transformation of Stage 2 only (green).

the longest orange bar.” Details about choice of color words
and word rearrangements are in the Supplemental Materials.

RESULTS
As shown in Figure 10, we find that across all 629 questions in
our corpus, our pipeline answers 51% correctly. As a baseline,
we compare this result to using Sempre with the flat relational
tables initially extracted in Stage 1 in place of the charts and
find that it only answers 39% of the questions correctly. Our
pipeline greatly outperforms Sempre on visual questions with
improvements of 53% for all visual questions, 74% on visual
lookup questions and 8% on visual compositional questions.
We find that for even for non-visual questions, our system out-
performs Sempre, by 6% overall, 19% on non-visual lookup
questions and 2% on non-visual compositional questions.

Figure 11 compares the accuracy of our complete pipeline
to a pipeline in which we only retain Stage 1 (and eliminate
Stage 2—visual to non-visual conversion) and to a pipeline in
which we only retain Stage 2 (more specifically, we include
data and encoding extraction from Stage 1 but eliminate data
table unfolding). Although both stages contribute significantly
to the overall success of our pipeline, we see a major improve-
ment in answering visual questions from Stage 2, which is
not surprising as Stage 2 is responsible for converting visual
questions into the non-visual form necessary for Sempre.

Figure 12 shows a variety of charts and questions with answers
and explanations generated by our pipeline, as well as the
answers generated by the baseline version of Sempre. We see
that our system generates correct answers and explanations
for many questions that Sempre cannot answer correctly. In

Table 2. Results from the user study (each result is represented as
avg(±stdev)). We see that for most of the measures, the visual expla-
nations generated by our system achieves the best.

particular, Stage 2 of our pipeline handles visual features and
allows our pipeline to correctly answers visual questions (Q5,
Q7, Q9, Q11, Q13, Q14). It even correctly answers non-visual
questions both lookup (Q1, Q3, Q17) and compositional (Q2,
Q4, Q8, Q10, Q19). However, our pipeline sometimes outputs
a wrong answer for a question Sempre gets correct, as in Q18.
In this case the error is due to a change in table structure from
table unfolding in Stage 1 of our pipeline.

Nevertheless, analyzing the wrong answers produced by our
system, we find that 92% are due to Sempre, and 5% are due
to incorrect conversions of visual questions. The remaining
4% are because of changes in the table structure from table
unfolding. Further analyzing the Sempre errors, 12% are
caused by Sempre not including the operation involved in the
question. For example, Sempre does not include operations
with binary output, making it unable to answer Y/N questions,
which accounts for 1.5% of all the questions. We refer to the
analysis in the original papers [59, 43] for more details about
errors by Sempre.

Our system gets the correct answer for Q16, but from the
explanation, we see that it counted the number of lines cor-
responding to the countries that appeared in the question (i.e.
Brazil and Russia) instead of counting the number of flips in
the GDP ranking of the two countries; it accidentally got the
answer correct. On the other hand, since Sempre does not give
explanations, it is unclear how many of the correct answers it
gives are obtained through an incorrect process because the
model is opaque. Even for questions our system gets wrong
(Q18, Q20, Q22, Q24), we see that our system transparently
explains how it arrived at the wrong answer.

USER STUDY
To see how the visual explanations generated by our pipeline
do on the measures of transparency, trust, and usefulness, we
conducted a user study with four different conditions: (1) the
no-explanation condition in which we only show the answer to
a question, (2) the human explanation condition in which we
show the answers and explanations generated by humans from
our formative study, (3) the non-visual explanation condition
in which we show the answers and the non-visual explanations
generated by our pipeline (at the end of step 4 of Stage 3),
and (4) the visual-explanation condition in which we show
the answers and visual explanations generated by our pipeline.
We consider three hypotheses:
H1: Users will find the visual explanation condition more
transparent and trustworthy than the no-explanation condition.
H2: Users will find the visual explanation condition better
than or at least as good as human explanation condition based
on transparency, trust, and usefulness.
H3: Users will find the visual explanation condition better

Figure 12. Sample questions from our corpus with answers generated by our pipeline as well as a baseline version of Sempre. Answers in green are
correct and answers in red are incorrect. If neither of pipeline generated a correct answer, we also report the correct answer as in Q20, Q22, and Q24.
We encourage readers to zoom in to the figure to read the text.

than the non-visual explanation condition based on trans-
parency, trust, and usefulness.

Study Design
We designed a within-subjects study with sixteen participants,
all fluent in English. To set up the study we gathered 20 unique
charts-question pairs from our corpus, and divided them into
four groups of five. We counterbalanced the mapping between
the four conditions and the four chart-question groups. We
then ran the study in two stages. In the first stage, we ran-
domly shuffled the questions. Along with the chart and the
question, we showed the participants answers and explana-
tions (if any) of the condition the question was mapped to. For
each question, the participants first determined whether the
presented answer was correct, and then rated the usefulness of
the explanation on a 5-point Likert scale. We timed how long
it took them to determine correctness. In the second stage,
we showed each group of questions in a counterbalanced or-
der and asked the participants to rate the transparency and
the trustworthiness of the condition on a 5-point Likert scale.
Afterwards, we collected free form responses about what the
participants considered relevant to the transparency, trustwor-
thiness, and usefulness. The study took about 30 minutes and
each participant received a $15.00 Amazon gift card.

Results and Discussion
Assessing H1. Figure 2 shows the results of the study. We
find that the visual explanations generated by our pipeline
significantly increased the transparency of the pipeline com-
pared to the no-explanation condition (Mann-Whitney U =
245.5, p < 0.001). Trust towards the visual explanation con-
dition was higher than the no-explanation condition, but the
difference was not significant (U = 149.0, p = 0.21).

Assessing H2. Participants also found the visual explanations
generated by our pipeline significantly more transparent than
the human-generated explanations (U = 178.0, p < 0.05). We
hypothesize that this result is due to the systematic way our
pipeline generates the explanations, as one participant put it,

“I like that in some system the explanation is more consistent
than others. It guarantees me that it will provide certain
information.” Finally, we saw that the trust towards visual
explanations generated by our pipeline is very close to that
towards human-generated explanations (U = 130.5, p = 0.46).

Assessing H3. When we compare between the visual explana-
tions to non-visual explanations generated by our pipeline, we
find that the measures of transparency, trust, and usefulness
are all higher for the visual explanations, but none of the im-
provements are significant (U = 153.5, p = 0.16; U = 143.5,
p = 0.27; U = 3356.5, p = 0.29, respectively).

In the free form response, most participants (12 of 16) reported
explanations as relevant to transparency (e.g., “I appreciated
being able to see from the explanations what caused the system
to make errors. Providing no explanation at all made the sys-
tem seem like a complete black box.”). For trust, participants
reported the accuracy of the answer (10 of 16) and whether the
explanation matches the answer (4 of 16) as relevant. Finally,
for usefulness, participants reported that explanations are more
useful if they refer to visual features (7 of 16).

In sum, we find the visual explanations generated by our sys-
tem are significantly more transparent than human-generated
explanations and are comparable in usefulness and trust.

Accuracy and Time. We also measured the accuracy and
speed with which participants could confirm the correctness
of answers with and without explanations. While these ini-
tial measurements show improvements in accuracy for and
speed when people have access to explanations, the relatively
small differences combined with large variance in timing, sug-
gest that further study is needed to understand the causes of
these improvements. We provide more details about these
measurements in the Supplemental Materials.

LIMITATIONS AND FUTURE WORK
Although our question answering system for charts and graphs
provides good accuracy, there are several limitations that we
would like to lift in future work.

Handle additional types of questions. Although our pipeline
achieves reasonable accuracy, there is room for improvement.
For example, people refer to visual features of a chart using
a variety of words. Our rule-based approach sometimes fails
to detect synonyms for these features. A supervised method
that learns to detect such visual references and convert visual
questions to non-visual questions could provide a more gener-
alizable model. We have also found classes of questions that
our system cannot handle, some because Sempre [59] cannot
handle them (e.g., yes/no questions), and some compositional
questions about visual encodings (e.g., Q22 of Figure 12). We
hope to extend our pipeline to handle such questions.

Improving explanations. While our template-based approach
generates explanations that can convey how our pipeline ob-
tained an answer, the resulting explanation may lack fluency
and offer little variations in style. Applying data-driven neural
models for natural language generation [38] may help address
such limitations. Moreover, as Kong et al. [31] and Kim et
al. [30] have suggested, highlighting parts of the charts relevant
to the explanations might also improve their effectiveness.

CONCLUSIONS
We have presented an automatic pipeline for answering ques-
tions about charts and generating visual explanations. In a
formative study, we find that people regularly ask visual ques-
tions and that visual explanations are both common and ef-
fective. Our automatic question-answering pipeline achieves
an overall accuracy of 51% on a corpus of real-world chart
with human-generated questions. Finally, user study confirms
that our system is significantly more transparent than the an-
swers and explanations generated by humans, and that it is
on par with the human-generated answers and explanations
for trust and usefulness. Our code and data are available at:
https://github.com/dhkim16/VisQA-release

ACKNOWLEDGMENTS
The authors thank Panupong Pasupat for advice during
pipeline development and Sean Liu for help with data an-
notation. This work is supported by an Allen Distinguished
Investigator award and by NSF award III-1714647. Dae Hyun
Kim is partly supported by a Samsung Scholarship.

REFERENCES
[1] 2018. Word embedding trained on Google News. (2018).

Retrieved April 02, 2018 from
https://code.google.com/archive/p/word2vec/.

[2] 2019. D3 JavaScript Library. (2019). Retrieved March
20, 2019 from https://d3js.org.

[3] 2019. Pew Research. (2019). Retrieved March 20, 2019
from http://www.pewresearch.org/.

[4] 2019. Universal dependencies. (2019). Retrieved March
20, 2019 from https://universaldependencies.org/.

[5] 2019. Vega-Lite Example Gallery. (2019). Retrieved
March 30, 2019 from
https://vega.github.io/vega-lite/examples/.

[6] 2019. X11 color names. (2019). Retrieved March 20,
2019 from
https://en.wikipedia.org/wiki/X11_color_names.

[7] Amina Adadi and Mohammed Berrada. 2018. Peeking
inside the black-box: A survey on Explainable Artificial
Intelligence (XAI). IEEE Access 6 (2018),
52138–52160.

[8] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian
Goodfellow, Moritz Hardt, and Been Kim. 2018. Sanity
checks for saliency maps. In Advances in Neural
Information Processing Systems. 9505–9515.

[9] Rishabh Agarwal, Chen Liang, Dale Schuurmans, and
Mohammad Norouzi. 2019. Learning to Generalize
from Sparse and Underspecified Rewards. arXiv
preprint arXiv:1902.07198 (2019).

[10] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu,
Margaret Mitchell, Dhruv Batra, C Lawrence Zitnick,
and Devi Parikh. 2015. Vqa: Visual question answering.
In Proceedings of the IEEE international conference on
computer vision. 2425–2433.

[11] Sriram Karthik Badam, Zhicheng Liu, and Niklas
Elmqvist. 2019. Elastic Documents: Coupling Text and
Tables through Contextual Visualizations for Enhanced
Document Reading. IEEE transactions on visualization
and computer graphics 25, 1 (2019), 661–671.

[12] Osbert Bastani, Carolyn Kim, and Hamsa Bastani. 2017.
Interpreting blackbox models via model extraction.
arXiv preprint arXiv:1705.08504 (2017).

[13] Leilani Battle, Peitong Duan, Zachery Miranda, Dana
Mukusheva, Remco Chang, and Michael Stonebraker.
2018. Beagle: Automated Extraction and Interpretation
of Visualizations from the Web. In Proceedings of the
2018 CHI Conference on Human Factors in Computing
Systems (CHI ’18). ACM, New York, NY, USA, Article
594, 8 pages. DOI:
http://dx.doi.org/10.1145/3173574.3174168

[14] Ritwick Chaudhry, Sumit Shekhar, Utkarsh Gupta,
Pranav Maneriker, Prann Bansal, and Ajay Joshi. 2019.
LEAF-QA: Locate, Encode & Attend for Figure
Question Answering. arXiv preprint arXiv:1907.12861
(2019).

[15] Charles Chen, Ruiyi Zhang, Eunyee Koh, Sungchul
Kim, Scott Cohen, Tong Yu, Ryan Rossi, and Razvan
Bunescu. 2019. Figure Captioning with Reasoning and
Sequence-Level Training. arXiv preprint
arXiv:1906.02850 (2019).

[16] Jinho Choi, Sanghun Jung, Deok Gun Park, Jaegul
Choo, and Niklas Elmqvist. 2019. Visualizing for the
Non-Visual: Enabling the Visually Impaired to Use
Visualization. In Computer Graphics Forum, Vol. 38.
Wiley Online Library, 249–260.

[17] Kenneth Cox, Rebecca E Grinter, Stacie L Hibino,
Lalita Jategaonkar Jagadeesan, and David Mantilla.
2001. A multi-modal natural language interface to an
information visualization environment. International
Journal of Speech Technology 4, 3-4 (2001), 297–314.

[18] Kedar Dhamdhere, Kevin S McCurley, Ralfi Nahmias,
Mukund Sundararajan, and Qiqi Yan. 2017. Analyza:
Exploring data with conversation. In Proceedings of the
22nd International Conference on Intelligent User
Interfaces. ACM, 493–504.

[19] Finale Doshi-Velez and Been Kim. 2017. Towards a
rigorous science of interpretable machine learning.
arXiv preprint arXiv:1702.08608 (2017).

[20] Nicholas Frosst and Geoffrey Hinton. 2017. Distilling a
neural network into a soft decision tree. arXiv preprint
arXiv:1711.09784 (2017).

[21] Jianfeng Gao, Michel Galley, and Lihong Li. 2018.
Neural approaches to conversational AI. In The 41st
International ACM SIGIR Conference on Research &
Development in Information Retrieval. ACM,
1371–1374.

[22] Tong Gao, Mira Dontcheva, Eytan Adar, Zhicheng Liu,
and Karrie G Karahalios. 2015. Datatone: Managing
ambiguity in natural language interfaces for data
visualization. In Proceedings of the 28th Annual ACM
Symposium on User Interface Software & Technology.
ACM, 489–500.

[23] Jonathan Harper and Maneesh Agrawala. 2014.
Deconstructing and restyling D3 visualizations. In
Proceedings of the 27th annual ACM symposium on
User interface software and technology. ACM, 253–262.

[24] Jonathan Harper and Maneesh Agrawala. 2017.
Converting Basic D3 Charts into Reusable Style
Templates. IEEE transactions on visualization and
computer graphics (2017).

[25] Enamul Hoque, Vidya Setlur, Melanie Tory, and Isaac
Dykeman. 2018. Applying Pragmatics Principles for
Interaction with Visual Analytics. IEEE transactions on
visualization and computer graphics 24, 1 (2018),
309–318.

[26] Daniel Jurafsky and James Martin. 2019. Dependency
Parsing. Speech and Language Processing (2019).
Retrieved March 20, 2019 from
https://web.stanford.edu/~jurafsky/slp3/13.pdf.

https://code.google.com/archive/p/word2vec/
https://d3js.org
http://www.pewresearch.org/
https://universaldependencies.org/
https://vega.github.io/vega-lite/examples/
https://en.wikipedia.org/wiki/X11_color_names
http://dx.doi.org/10.1145/3173574.3174168
https://web.stanford.edu/~jurafsky/slp3/13.pdf

[27] Kushal Kafle, Brian Price, Scott Cohen, and Christopher
Kanan. 2018. DVQA: Understanding data visualizations
via question answering. In Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition. 5648–5656.

[28] Kushal Kafle, Robik Shrestha, Brian Price, Scott Cohen,
and Christopher Kanan. 2019. Answering Questions
about Data Visualizations using Efficient Bimodal
Fusion. arXiv preprint arXiv:1908.01801 (2019).

[29] Samira Ebrahimi Kahou, Vincent Michalski, Adam
Atkinson, Ákos Kádár, Adam Trischler, and Yoshua
Bengio. 2017. Figureqa: An annotated figure dataset for
visual reasoning. arXiv preprint arXiv:1710.07300
(2017).

[30] Dae Hyun Kim, Enamul Hoque, Juho Kim, and
Maneesh Agrawala. 2018. Facilitating Document
Reading by Linking Text and Tables. In The 31st Annual
ACM Symposium on User Interface Software and
Technology. ACM, 423–434.

[31] Nicholas Kong, Marti A Hearst, and Maneesh Agrawala.
2014. Extracting references between text and charts via
crowdsourcing. In Proceedings of the SIGCHI
conference on Human Factors in Computing Systems.
ACM, 31–40.

[32] Jayant Krishnamurthy, Pradeep Dasigi, and Matt
Gardner. 2017. Neural semantic parsing with type
constraints for semi-structured tables. In Proceedings of
the 2017 Conference on Empirical Methods in Natural
Language Processing. 1516–1526.

[33] Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016.
Rationalizing neural predictions. arXiv preprint
arXiv:1606.04155 (2016).

[34] Chen Liang, Mohammad Norouzi, Jonathan Berant,
Quoc Le, and Ni Lao. 2018. Memory augmented policy
optimization for program synthesis with generalization.
arXiv preprint arXiv:1807.02322 (2018).

[35] P. Liang. 2013. Lambda Dependency-Based
Compositional Semantics. arXiv preprint
arXiv:1309.4408 (2013).

[36] Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh.
2016. Hierarchical question-image co-attention for
visual question answering. In Advances In Neural
Information Processing Systems. 289–297.

[37] Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language
processing toolkit. In Association for Computational
Linguistics (ACL) System Demonstrations. 55–60.

[38] Hongyuan Mei, Mohit Bansal, and Matthew R Walter.
2016. What to talk about and how? Selective Generation
using LSTMs with Coarse-to-Fine Alignment. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies. 720–730.

[39] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. 2013. Distributed
representations of words and phrases and their
compositionality. In Advances in neural information
processing systems. 3111–3119.

[40] Vibhu O Mittal, Giuseppe Carenini, Johanna D Moore,
and Steven Roth. 1998. Describing complex charts in
natural language: A caption generation system.
Computational Linguistics 24, 3 (1998), 431–467.

[41] Tamara Munzner. 2014. Visualization Analysis and
Design. CRC Press.

[42] Menaka Narayanan, Emily Chen, Jeffrey He, Been Kim,
Sam Gershman, and Finale Doshi-Velez. 2018. How do
humans understand explanations from machine learning
systems? an evaluation of the human-interpretability of
explanation. arXiv preprint arXiv:1802.00682 (2018).

[43] Panupong Pasupat and Percy Liang. 2015.
Compositional Semantic Parsing on Semi-Structured
Tables. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), Vol. 1. 1470–1480.

[44] Jorge Poco and Jeffrey Heer. 2017. Reverse-Engineering
Visualizations: Recovering Visual Encodings from Chart
Images. In Computer Graphics Forum, Vol. 36. Wiley
Online Library, 353–363.

[45] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint
arXiv:1606.05250 (2016).

[46] Vijayshankar Raman and Joseph M Hellerstein. 2001.
Potter’s wheel: An interactive data cleaning system. In
VLDB, Vol. 1. 381–390.

[47] Revanth Reddy, Rahul Ramesh, Ameet Deshpande, and
Mitesh M Khapra. 2019. FigureNet: A Deep Learning
model for Question-Answering on Scientific Plots. In
2019 International Joint Conference on Neural
Networks (IJCNN). IEEE, 1–8.

[48] Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. Why should i trust you?: Explaining the
predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge
discovery and data mining. ACM, 1135–1144.

[49] Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Anchors: High-precision
model-agnostic explanations. In Thirty-Second AAAI
Conference on Artificial Intelligence.

[50] Arvind Satyanarayan, Dominik Moritz, Kanit
Wongsuphasawat, and Jeffrey Heer. 2017. Vega-lite: A
grammar of interactive graphics. IEEE Transactions on
Visualization and Computer Graphics 23, 1 (2017),
341–350.

[51] Manolis Savva, Nicholas Kong, Arti Chhajta, Li Fei-Fei,
Maneesh Agrawala, and Jeffrey Heer. 2011. Revision:
Automated classification, analysis and redesign of chart
images. In Proceedings of the 24th annual ACM
symposium on User interface software and technology.
ACM, 393–402.

[52] Vidya Setlur, Sarah E Battersby, Melanie Tory, Rich
Gossweiler, and Angel X Chang. 2016. Eviza: A natural
language interface for visual analysis. In Proceedings of
the 29th Annual Symposium on User Interface Software
and Technology. ACM, 365–377.

[53] Vidya Setlur and Melanie Tory. 2017. Exploring
Synergies between Visual Analytical Flow and
Language Pragmatics. (2017).

[54] Vidya Setlur, Melanie Tory, and Alex Djalali. 2019.
Inferencing Underspecified Natural Language
Utterances in Visual Analysis. In Proceedings of the
24th International Conference on Intelligent User
Interfaces (IUI ’19). 40–51.

[55] Yelong Shen, Po-Sen Huang, Jianfeng Gao, and Weizhu
Chen. 2017. Reasonet: Learning to stop reading in
machine comprehension. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 1047–1055.

[56] Karen Simonyan, Andrea Vedaldi, and Andrew
Zisserman. 2013. Deep inside convolutional networks:
Visualising image classification models and saliency
maps. arXiv preprint arXiv:1312.6034 (2013).

[57] Yiwen Sun, Jason Leigh, Andrew Johnson, and
Sangyoon Lee. 2010. Articulate: A semi-automated
model for translating natural language queries into
meaningful visualizations. In International Symposium
on Smart Graphics. Springer, 184–195.

[58] Caiming Xiong, Victor Zhong, and Richard Socher.
2016. Dynamic coattention networks for question
answering. arXiv preprint arXiv:1611.01604 (2016).

[59] Yuchen Zhang, Panupong Pasupat, and Percy Liang.
2017. Macro Grammars and Holistic Triggering for
Efficient Semantic Parsing. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics,
1214–1223.

[60] Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103 (2017).

	Introduction
	Related work
	Natural Language Interactions with Visualization
	Automatic Question Answering
	Explainable AI

	Formative Study
	Gathering Charts, Questions, Answers and Explanations
	Analysis
	Additional Collection of Visual Questions

	Method
	Stage 1: Extract Data Table and Encodings
	Extraction from Vega-Lite Charts
	Converting Charts into Vega-Lite

	Stage 2: Visual to Non-Visual Question Conversion
	Stage 3: Explanation Generation

	Results
	User Study
	Study Design
	Results and Discussion

	Limitations and Future Work
	Conclusions
	Acknowledgments
	References

