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Figure 1. Documents often include tables that provide evidence for arguments made in the main body text. In explicit references (left), the sentence text
“Of the successful searchers, 44% said the information they found online affected a decision about how to treat an illness or cope with a medical condition”
directly matches the text and numbers in the table cells (yellow highlights). In implicit references (right), the sentence text “... Of those with dial-up
connections, significantly more men than women said they were interested in getting high speed connections” corresponds to row and column headers and
readers must identify data cells at the intersection of two – i.e. the cells containing 47 and 34. Our interactive document reader automatically extracts
such references for an input PDF document. Readers can click on a sentence to highlight the corresponding table cells and vice versa.

ABSTRACT
Document authors commonly use tables to support arguments
presented in the text. But, because tables are usually separate
from the main body text, readers must split their attention
between different parts of the document. We present an inter-
active document reader that automatically links document text
with corresponding table cells. Readers can select a sentence
(or tables cells) and our reader highlights the relevant table
cells (or sentences). We provide an automatic pipeline for ex-
tracting such references between sentence text and table cells
for existing PDF documents that combines structural analy-
sis of tables with natural language processing and rule-based
matching. On a test corpus of 330 (sentence, table) pairs,
our pipeline correctly extracts 48.8% of the references. An
additional 30.5% contain only false negative (FN) errors – the
reference is missing table cells. The remaining 20.7% contain
false positive (FP) errors – the reference includes extraneous
table cells and could therefore mislead readers. A user study
finds that despite such errors, our interactive document reader
helps readers match sentences with corresponding table cells
more accurately and quickly than a baseline document reader.
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INTRODUCTION
Data tables frequently appear in news articles, financial re-
ports and scientific articles. For example, a news article may
describe a trend, a relationship or a comparison in the text,
and include a table that provides additional corroborating data.
Fully understanding the document often requires mentally
connecting and making sense of the text together with the
corresponding table. In fact, previous work has shown that
people can achieve much higher recall by jointly reading the
text and tables in a journal article than by looking at the tables
or the surrounding text alone [17].

Unfortunately, reading text together with a data table is chal-
lenging. As shown in Figure 1, the body text can contain
explicit references (left), where the sentence text directly
matches text in table cells or implicit references (right), where
the sentence text matches the text in row and column header
cells, but leaves it up to readers to identify the data cells at
the intersection of the two. Moreover, readers must split their
attention between the text and table and mentally integrate
the two mutually dependent information sources. Such split-
attention increases cognitive load [8, 15]. As a consequence,
people often struggle to associate the text with the correspond-
ing cells in the table, especially if the table is large and the text
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references multiple cells. Moreover, readers must break their
flow and move their locus of attention from the main body text
to the table and back again. The more time it takes to find the
corresponding table cells, the more difficult it is to smoothly
resume reading the main body text. Although text references
and corresponding table cells are intended to be read together,
many readers end up trying to make sense of them separately.

We present an interactive document reader designed to fa-
cilitate reading such documents and reduce split attention.
Readers can select a sentence (or table cells) and our reader
highlights the corresponding table cells (or sentences). We
provide an automatic pipeline for extracting such references
between body text and table cells for an input PDF document.
After breaking the document into sentences and tables, our
pipeline considers each (sentence,table) pair and operates in
three main stages: (1) In the table structure extraction stage, it
identifies the data type (e.g. text, number, percent, money, etc.)
and cell type (title, header, or data) of each table cell. (2) It
next matches sentence text to cells based on natural language
processing (NLP) techniques. (3) Finally, it applies rule-based
refinement of the matches based on the table structure. For
each sentence, the pipeline either outputs a reference consist-
ing of one or more matching cells in the table, or it outputs a
null reference if it cannot find such a match.

We compare our automatically generated references to human-
generated gold standard references for a set of 330 (sentence,
table) pairs gathered from a variety of source documents writ-
ten for general audiences (e.g. Pew research reports [4], ar-
ticles from the Economist magazine [2]) and for computer
science researchers (e.g. ACL papers). Our pipeline correctly
extracts 48.8% of the references. An additional 30.5% contain
only false negative errors – the reference is incomplete and
missing one or more table cells, while the remaining 20.7%
contain false positive errors – the reference includes extrane-
ous table cells and could therefore mislead readers.

We also conduct a controlled user study comparing our inter-
active document reader with a baseline reader that does not
link text with tables. We find that despite the errors in refer-
ence extraction, when using our interface, participants match
sentence text to table cells 26.4% more accurately and spend
22.9% less time than when using the baseline interface. These
results suggest that automatically extracting and highlighting
the links between document text and table cells reduces the
split attention problem and facilitates reading the whole docu-
ment. Our study also finds an asymmetry in the effects of FP
errors and FN errors on this matching task. Participants are
23.2% less accurate and 27.8% slower at matching sentence
text to table cells when the highlighted reference contains an
FP error compared to highlighting a reference that contains
only FN errors. This asymmetry suggests that FP errors are
far more harmful to readers than FN errors because FP errors
are misleading, while FN errors only omit information.

RELATED WORK
Our work builds on two main areas of prior work; (1) tech-
niques designed to facilitate document reading, and (2) table
parsing for question answering.

Techniques for Facilitating Document Reading
While documents often present data in the form of tables and
graphics, reading and understanding the data in the context of
the related text is challenging [17, 24]. Recently, researchers
have developed techniques to better support such reading tasks.
For example, several systems attempt to extract data and visual
encodings from charts to improve data analysis and chart read-
ing experiences [33, 19, 22, 32, 20]. Kong and Agrawala [23]
further propose graphical overlay techniques to improve read-
ability of existing visualizations after extracting the underlying
data and encodings. However, these works primarily focus on
improving the readability of visualizations while we focus on
improving the readability of text and tables.

The most closely related work to ours is from Kong et al. [24]
who extract references between text and visualizations (they
only demonstrate their approach on bar charts) using a crowd-
sourcing pipeline. Our work differs in two ways: (1) Instead
of relying on crowd workers to annotate the references, we
present an automated algorithm for extracting references be-
tween text and tables. (2) Instead of working only with bar
charts representing numeric data, the tables we work with
can contain data of a variety of different types including text,
number, money, time, etc.

Table Parsing for Question Answering
Govindaraju et al. [17] observe that tables are often embed-
ded in text documents, and that the surrounding text contains
information that is not present in the table. They present a
technique for extracting the information in the surrounding
text and joining it with the information in the table to improve
the table schema. While our work is based on a similar ob-
servation, instead of improving table schema, we focus on
extracting references between the text and table cells.

Researchers have also developed techniques for parsing tables
into semi-structured representations that support automatic
retrieval of answers to simple queries [10, 31, 30, 11]. Pimlikar
et al. [31] and Cafarellla et al. [10] take a list of keywords
and a set of tables as input and produce a ranked list of tables
where the columns are relevant to the given keywords. Chen
et al. [11] extract the hierarchical structures from tables in
a spreadsheet format. While our approach is related to this
line of work, we focus on parsing table struture and natural
language sentences in the body text of PDF documents to
extract references between the sentences and table cells.

Pasupat and Liang [30] take a table and a question specified
in natural language as input and answer it based on the in-
formation in the table. The challenge here is to semantically
understand questions and convert them into a sequence of
arithmetic and logical operations. Our reference extraction
problem does not involve building such arithmetic and logical
expressions. Instead, we link sentences in the text to table
cells using syntactic and semantic matching.

AUTOMATIC REFERENCE EXTRACTION
Our automatic reference extraction algorithm takes a PDF doc-
ument as input and outputs references between each sentence
in the text and cells in a table (Figure 2). The algorithm first
breaks the main body text in the PDF into sentences using



Figure 2. Our automatic reference extraction pipeline. The input to the pipeline is a (sentence, table) pair and the output is a reference matching the
sentence with a corresponding set of table cells it refers to. The reference includes both the cell indices (Figure 3a) and cell contents.

(a) Row and column indices and span values (b) Cell types (title, headers, data)

Figure 3. In Stage 1 of our pipeline, we first compute the spatial row and column indices [rowindex, colindex] as well as the rowspan and colspan
values for each cell (a). Specifically, we set [rowindex,colindex] = [0,0] for the top left cell and process the HTML table tags from top to bottom, left to
right, incrementing colindex or rowindex each time we encounter a </td> or </tr> tag respectively. We similarly annotate each cell with the HTML
<rowspan> and <colspan> information. Later in Stage 1, we use this spatial information to identify the regular subgrid (red outline). We then classify
each cell of the table as a title cell, header cell or data cell using the span and subgrid structure (b).

the Stanford CoreNLP toolkit [27]. It also identifies and ex-
tracts all the tables in HTML format using Adobe Acrobat
Reader [1]. Our algorithm then takes each (sentence, table)
pair as input and applies a three stage pipeline to output either
the set of cells the sentence refers to, or a null reference if
there is no correspondence between the sentence and table.

Stage 1: Extract Table Structure
The first stage of our pipeline analyzes the input table to extract
low-level information about the (1) spatial indices and spans,
(2) data type (e.g. text, number, percentage, etc.) and (3)
cell type (title, header, data) of each table cell. It also (4)
normalizes the values held in each cell to a standardized format.
Stages 2 and 3 of our pipeline use this low-level information
to build the reference between the sentence and the table.

Compute spatial indices and spans of each cell
Given an input HTML table, we analyze the <tr> tags corre-
sponding to each table row and <td> tags corresponding to
each cell to generate row and column indices [rowindex, col-
index] as well as the rowspan and colspan for each table cell
(Figure 3a). The resulting indices encode the spatial position
of the cells relative to one another and the spans indicate cells
that span more than one row or column.

Identify data type of each cell
We classify the data type of each cell into one of six categories:

• Money: numeric value that represents an amount of money
in some currency (e.g. “$10”).

• Percent: numeric value that represents a percentage (e.g.
“10%”, “3 percent”).

• Date: time value at granularity greater than one day (e.g.
“1980/01/01”, “April 2014”).
• Time: time value at granularity finer than a day (e.g.

“11:12”, “11 o’clock”, “15 sec”).
• Number: numeric value that does not represent money,

percent, date or time (e.g. a count, a rank).
• Text: text that does not fall into any other category.

To obtain this data type information, we apply the 7-class
model of the Stanford Named Entity Recognizer [14] which
labels each cell as either a Location, Organization, Person,
Money, Percent, Date or Time. We ignore the Location, Orga-
nization and Person labels as the later stages of our pipeline
do not need this information. We label any cells that do not
fall into the Money, Percent, Date or Time categories as either
Text or a Number depending on whether the cell contains a
numeric value or it includes additional text.

Identify cell type of each cell
Tables commonly contain three types of cells (Figure 3b):

• Title cells are sometimes included as a part of a table and
describe its overall contents.
• Header cells often appear at the top of columns (or left side

of rows) and provide metadata describing the cells in the
column (or row).
• Data cells appear in all tables as they hold the specific data

values reported in the table.

Classifying table headers and titles versus data cells is chal-
lenging as their formats can vary from document to document
or even table to table within a document [13]. In fact, we
analyzed a collection of example tables from a variety of PDF



documents (newspaper articles, research papers, reports, etc.)
and found that they use a variety of formats to distinguish
titles and headers from data cells. In general, however, we
found that for most tables the titles and headers appear in the
topmost rows and/or the leftmost columns of the table and can
sometime span multiple rows or columns. In contrast, data
cells usually appear in the lower right part of the table and
form a regular grid at the finest level of granularity (i.e. the
cells do not span multiple rows or columns).

Based on these observations, we classify the cell type of each
cell in the table in a two step process. First, we label any
irregular rows or columns in the table – i.e. rows or columns
that contain cells spanning more than one column or row, re-
spectively (e.g. topmost row of Figure 3a). The remaining
unmarked cells then form a regular grid (e.g. subgrid outlined
in red in Figure 3a). We assume that the topmost row and left-
most column of this regular grid are headers at the finest level
of granularity, and label all other cells within the regular grid
as data cells. If the topmost header row contains a single cell
that spans all the columns, we label it a title cell (Figure 3b).

Some tables do not contain row or column headers at the
finest level of granularity. To properly handle such tables, we
further rely on the assumption that the data type of header
cells is often different from the data type of data cells. In
many tables for example, header cells contain text while the
data cells contain numbers. Therefore, we check if the cells
in the topmost row and the leftmost column of the regular
grid contain the same data type as the cells immediately below
or to the right, respectively. If the data type is the same, we
re-classify the finest granularity header cells as data cells.

Document authors sometimes leave data type information
out of the data cells and only include it in the corresponding
header cell. For example, the column header “% of online
men” (Figure 3b) suggests that the data cells in the column are
percentages, but the data cells only contain numeric values. To
identify the data type of these cells, we parse header cells using
a variety of common regular expressions (e.g. ‘% of’, ‘in $’,
‘in USD’, etc.) and then propagate the data type information
to the data cells in the corresponding columns or rows.

Normalize cell values

Figure 4. This table includes an order
of magnitude term ‘million’ in a column
header. In the normalization step, we
propagate this magnitude to the data
cells in the column.

Authors sometimes put
the order of magnitude
of data values (e.g. bil-
lions, millions, etc.) into
a header so that the ta-
ble remains concise (Fig-
ure 4). To identify such
order of magnitude infor-
mation we again parse
the header cells using
common order of mag-
nitude expressions (e.g.
‘billions’, ‘(B)’, ‘mill’,
etc.) and propagate the
information to the corre-
sponding data cells.

Figure 5. The phrase tree generated by the Stanford CoreNLP con-
stituency parser for the sentence “Of those with dial-up connections, sig-
nificantly more men than women said they were interested in high-speed
connections”. Each subtree indicates a phrase and our syntactic match-
ing algorithm finds a match between the phrase ‘dial-up connections’
and a cell in the table of Figure 1(right).

Stage 2: Match Sentence Text to Table Cells
In the second stage, we match the text of the input sentence
to a corresponding set of cells in the input table using a com-
bination of four different strategies using natural language
processing (NLP) techniques. The first three strategies are
designed to find matches against cells that contain text, while
the fourth strategy is designed to find matches against cells
that contain the other numeric data types.

Matching text cells based on unique words
Document authors often reference a specific table cell by in-
cluding words in the sentence that uniquely appear in that cell
and no other cell in the table. Consider the sentence “How-
ever, mirroring the overall softness of the tech sector, sales of
computer hardware decreased 1% versus a year-ago to $1.6
billion.” and the table in Figure 4. The terms ‘computer’ and
‘hardware’ appear in only one cell and it is likely that the sen-
tence refers to it. We algorithmically implement this matching
strategy by removing stop words from both the sentence and
the table and lemmatizing the remaining words. Then for each
cell, we store only the unique words, which do not appear in
any other table cell. Finally, we match the remaining sentence
words with the unique words in each table cell to identify a set
of cells that the sentence is likely to be referencing.

Unfortunately, this simple matching strategy can produce in-
correct references. Consider the sentence “Of those who said
they had virus protection on their home computers, signifi-
cantly more men than women said they were responsible for
setting up the protection” and the table in Figure 3b. The word
‘responsible’ matches with the cell containing “Responsible
for Maintenance”, while the words ‘virus’ and ‘protection’
match with the cell containing “Set up virus protection, if have
it”. Only the second match is relevant to the sentence. We use
syntactic and semantic analyses to better handle such cases.

Matching based on syntactic analysis
Syntactic analysis identifies the hierarchical phrase structure
of a sentence as well as the grammatical dependencies be-
tween words. We use this syntactic structure to improve our
matching algorithm. We first apply the constituency parser
in the Stanford CoreNLP toolkit [27] to the input sentence to
obtain its phrase tree (Figure 5). We then traverse the phrase
tree breadth-first, starting at the root, and check if the entire



Figure 6. The sentence “Significantly more men than women think that
talking about topics is an important reason to email with these special inter-
est groups.” matches the cell text “Discuss issues”, because the sentence
phrase ‘talking about topics’ has the same meaning as the cell text even
though they have no words in common. Our semantic similarity match-
ing strategy detects this match.

.

phrase in the current subtree (after removing stop words and
lemmatization) is uniquely contained within a single cell of
the table – every word in the phrase must appear in exactly one
cell. If such a unique cell exists, we add it to the reference.

Using this approach, we can identify references where indi-
vidual sentence words do not uniquely match to a single table
cell, but multi-word phrases do uniquely match. Consider
the sentence “Of those with dial-up connections, significantly
more men than women said they were interested in high-speed
connections” with respect to the table in Figure 1(right). The
words ‘dial-up’ and ‘connections’ appear separately in multi-
ple table cells, but both words in the phrase ‘dial-up connec-
tions’ appear together in only one cell. Our syntactic analysis
strategy identifies the matching cell correctly.

Matching based on semantic analysis
Sometimes, a sentence phrase and the words in a cell have the
same meaning, but do not have any words in common. Con-
sider the sentence “Significantly more men than women think
that talking about topics is an important reason to email with
these special interest groups” and the table in Figure 6. The
sentence phrase ‘talking about topics’ has the same meaning
as the cell containing “Discuss issues”, yet none of the words
match and neither of our previous strategies would match them.
To better handle such cases, we analyze the semantic similarity
(i.e. similarity in meaning) between sentence phrases and the
words in each cell.

We modify our syntactic matching strategy to compare each
sub-phrase in the breadth-first traversal of the phrase tree using
a distance based on word2vec – a vector model of words that
encodes semantics. We use the pre-trained model of Mikolov
et al. [28] which was trained on parts of the Google News
dataset [6] and produces vectors with 300 dimensions.

Specifically, we look up the word2vec vector for each word
in the sentence phrase (after stop word removal and lemma-
tization) and sum them to generate a vector vs representing
the phrase. We similarly look up and sum the vectors for each
word in the cell text to generate vc, and then compute the
cosine similarity between these vectors as

cos(vvvs,vvvc) =
vvvs ·vvvc

||vvvs|| · ||vvvc||
(1)

The word2vec model is designed so that the closer this cosine
similarity is to 1, the greater the semantic similarity between
the sentence phrase and the cell text. Therefore, whenever the

cosine similarity between them is greater than a threshold τ

(set empirically to 0.75), we treat them as a semantic match.
This procedure correctly handles the example in Figure 6
because the semantic similarity between the sentence phrase
‘talking about topics’ and the cell text “Discuss issues” is
above our semantic matching threshold τ .

Handling cells containing numeric and time values
To match sentence text to cells containing numeric values (i.e.
numbers, percents or money), we first detect all strings in the
sentence that represent numbers using the Stanford Named
Entity Recognizer [14] and convert them into numerals (e.g.
‘five million’ is converted to 5,000,000).

Document authors often refer to table cells containing numeric
values by rounding their rightmost significant digit. For in-
stance, the sentence phrase “about 1.5 meters” may be used to
refer to a table cell containing the value 1.53 meters. In some
cases, the sentence phrase may also suggest the direction of
rounding – either up or down. For example, the phrase “more
than 5 million” may be used to refer a table cell containing
the value 5,700,000. Thus, whenever we encounter a numeric
value in the sentence text, we examine the surrounding words
to check whether they indicate a rounding direction (up, down
or nearest) – e.g. ‘more than’ indicates the value in the sen-
tence has been rounded down. Then, if we do not find an
exact match to the numeric value in the sentence, we compare
the rounded value. As shown in Figure 4, this approach al-
lows us to match the dollar amount in the sentence “... sales
of computer hardware decreased 1% versus a year-ago to
$1.6 billion” to the topmost data cell in the second column
containing “$1,630”.

We have found that document authors use a variety of formats
to express dates (e.g. ‘01/01/1980’ and ‘Jan 01, 1980’), time
(e.g. ‘14:02’ and ‘2:02 PM’), and proportions (e.g. ‘20%’
and ‘1 in 5’). To handle such variability, we detect dates, time
and proportions within the sentence text using regular expres-
sion templates (e.g. ‘dd/mm/yy’, ‘dd-mm-yyyy’, ‘hh:mm:ss’,
etc.) and normalize them to a standardized format so that our
algorithm can correctly match equivalent expressions.

Stage 3: Rule-based Refinement of Matches
While many of the matches produced in Stage 2 are correct,
because Stage 2 does not consider table structure (i.e. cell
type – title, header, data of each cell), it can miss matches
between the sentence and cells and it can incorrectly match the
sentence to irrelevant cells. For instance, implicit references as
in Figures 1(right) and 7, occur when a sentence only describes
the row and column header cells in the text, leaving it up to the
reader to identify the data cells that fall in the intersection of
the these rows and columns. Our matching algorithm in Stage
2 would miss the matches to these data cells. The third stage
of our pipeline is designed to handle such implicit references
and also remove irrelevant matches based on table structure.

Rule 1: Add implicit data cells in the intersection of headers
To properly handle implicit references, our first rule considers
all of the row and column headers returned by the matching
algorithm in Stage 2 and automatically adds the data cells that
fall in the intersection of the corresponding rows and columns



Figure 7. The sentence “Equal numbers of men and women said they
didn’t have time” implicitly refers to the data cells containing the value
29. However, the matching stage of our pipeline (Stage 2) only matches
the row and column headers (green, yellow, blue outlines) to the sentence
text. In Stage 3, we apply the add implicit data cells rule to correctly add
in the implicit data cells (red outlines) to the reference.

Figure 8. The sentence “In March 2005, 13% of men owned iPods or
Mp3 players”, matches with all the cells outlined in red and green after
the matching stage (Stage 2) of our pipeline. However, only the cells
with green outline are correct matches. In Stage 3, we remove the cells
with red outline based on the rule that cells which do not appear in the
intersection of row and column headers should be removed.

to the set of matched cells. Applying this rule on the example
in Figure 7 correctly adds the implicitly referenced data cells.

Rule 2: Remove data cells not in the intersection of headers
In some tables, the same value may appear in multiple data
cells and if a sentence contains the value, our matching al-
gorithm (Stage 2) identifies all such cells as a match to the
sentence even though some of them may be irrelevant (Fig-
ure 8). But if the sentence also refers to the row and column
headers, we can use the table structure to remove the irrelevant
data cell matches. Our second rule only retains data cells that
lie at the intersection of matched row and columns headers
and eliminates all other data cells.

Rule 3: Add implicit header cells if data cells match uniquely
Header cells are sometimes referenced implicitly as well. Con-
sider the sentence “34% of women cited cost as the reason
for not using the internet” and the table in Figure 7. Our
matching stage (Stage 2) matches the sentence text ‘women’
with the header cell “% of online women” and the sentence
text ‘34%’ with a unique data cell “34” But the sentence does
not explicitly reference the row header cell “Too expensive”

and our semantic matching strategy does not find a matching
sentence phrase that is above its match threshold. We han-
dle such implicit references to header cells by automatically
adding the header cells whenever a single data cell matched
uniquely within the table in Stage 2. In this case, since the
single data cell “34” is uniquely matched, this rule allows us
to correctly include the row header cell “Too expensive.”

Rule 4: Remove potentially irrelevant header cells
In some cases, our matching algorithm in Stage 2 finds
matches between the sentence text and row and column header
cells, but the sentence also contains numeric data values that
do not appear in the table. Consider the example sentence

“58% of men and 47% of women said they know how to upload
images or other files to a website so others could see them”
with respect to the table in Figure 8. In Stage 2, we obtain
matches to the columns “% of online men” and “% of online
women”. However, the numeric data values given in the sen-
tence 58% and 47% do not appear in any of the table cells. In
such cases, our fourth rule removes the header cells based on
the assumption that the sentence is unlikely to be related to the
table. In this case, the rule removes “% of online men” and
“% of online women” from the reference.

PIPELINE EVALUATION
Figures 1, 9 and 12 show references generated using our auto-
matic reference extraction pipeline. To quantitatively evaluate
the accuracy of our automatic reference pipeline, we gathered
a representative sample of (sentence, table) pairs from docu-
ments written for general audiences as well as scientific papers
written for researchers. We obtained a gold reference set for
each pair and then compared the results from our reference
extraction pipeline to the gold reference set.

Corpus
To build the representative sample of (sentence, table) pairs,
we gathered two sets of PDF documents written for different
audiences. Our Pew dataset contains 10 research reports writ-
ten for general audiences and published by Pew Research [4]
in the area of public policy. Our Academic dataset contains
6 research papers written for computer science researchers
from the ACL conference [18, 34, 16, 25, 12, 26]. Since most
sentences in a document are unrelated to any table within it,
we manually identified tables as well as paragraphs related
to these tables from the corpus. Thus, we could ensure that
many of the sentences would reference the tables, but since
we took entire paragraphs, we could also be sure that some
sentences would not reference the tables. Table 1 summarizes
the number of tables, paragraphs and (sentence, table) pairs
we extracted for each dataset.

Dataset # Docs # Tables # Paras # (sentence, table) pairs
Pew 10 26 35 127
Academic 6 11 14 72
Kong [24] 18 35 49 139

Table 1. Summary of the three datasets we use to evaluate our pipeline.
The Pew and Kong datasets are culled from documents written for gen-
eral audiences while the Academic dataset is from computer science re-
search papers.



(a) Correctly extracted reference (b) Correctly extracted reference

(c) Extracted reference containing FN errors (d) Extracted reference containing FP errors

Figure 9. References extracted by our automatic reference extraction pipeline. (a) Correctly extracted reference for the sentence “Equal numbers of
men and women said they didn’t have time.” (b) Correctly extracted reference for the sentence “Men said slightly more than women that it would be very
hard for them to give up computer, the internet, and PDAs.” (c) Reference containing false negative errors (missing cells) for the sentence “Women were
significantly more likely than men to cite many possibilities as “major reasons” they didn’t use the internet: they didn’t need it; didn’t want it; were worried
about online porn, credit card theft, and fraud; said it is too expensive; and too complicated and hard to understand.” Because the pipeline removes the
stop words ‘do’, ‘not’, ‘need’, ‘want’, and ‘it’, it misses the header rows “Don’t need it” and “Don’t want it.” (d) Reference containing false positive
errors (includes irrelevant cells) for the sentence “More men than women said they had changed that page for their home computers at some point.” Our
pipeline detects an extra row because the word ‘computer’ appears in the sentence and in a single cell “Tried themselves to fix computer problem.”

For comparison, we include a third dataset from Kong et
al. [24] that contains (sentence, table) pairs from 18 gen-
eral audience documents including news sources like the
Economist [2] and the Guardian [3]. Together, the documents
in our datasets cover a range of writing styles and table usages.

Gold Reference Set
We used an iterative process to create a gold reference set for
the (sentence, table) pairs in the Pew and Academic datasets.
First, two authors from our research team independently iden-
tified references between the (sentence, table) pairs following
the reference annotation guidelines of Kong et al. [24]. They
then resolved each inconsistency by explaining their logic in
producing the reference. They then worked together to de-
velop a consensus reference. Finally, a third author scrutinized
the resulting references and initiated a second round of debate
for each reference that he disagreed with. After a thorough
discussion between all three authors, they reached a final con-
sensus about the set of cells to include as the gold reference
set for each sentence. For the Kong dataset, we used the gold
references provided by Kong et al. [24].

Pipeline Performance and Accuracy
Across all three datasets, our reference extraction pipeline took
an average of 258.38 ms to process each (sentence, table) pair
on a 2.5Ghz MacBook Pro with an Intel Core i7 processor and
16GB RAM. Stage 1 took an average of 233.89 ms per table,
Stage 2 took 208.14 ms per sentence, and Stage 3 took 0.42
ms per sentence.

To compute the accuracy of our pipeline, we compare the
results it generates to the gold references. Specifically, for each
sentence, we compare our automatically generated reference
A to the corresponding gold reference G and categorize the
results as follows:

• Correct reference: our pipeline generates the exact same
set of table cells as in the gold reference, i.e. G = A.

• False negative (FN): our pipeline generates a reference that
is missing some cells that are included in the gold reference,
i.e. A⊂ G.



Figure 10. Comparison of correct, FN, FP and FPFN references pro-
duced by our complete pipeline for each of the datasets, Pew (orange),
Kong (green) and Academic (yellow) as well as the overall combination
of all three datasets (blue).

• False positive (FP): our pipeline generates a reference that
includes extraneous cells that are not in the gold reference,
i.e. G⊂ A.

• False positive + False negative (FPFN): our pipeline gen-
erates references with both false negatives and false posi-
tives, i.e. G 1 A and A 1 G.

As shown in Figure 10, we find that overall (blue bars) across
all three datasets, our complete pipeline generates 48.8% cor-
rect references, 30.5% references that contain only FN errors,
11.2% references that contain only FP errors, and 9.5% ref-
erences that contain both FN and FP errors. Moreover, the
accuracy numbers are similar across the three datasets despite
the fact that they contain different kinds of writing meant for
different audiences. This result suggests that the performance
of our pipeline is somewhat independent of writing style.

For the Kong dataset, we also compare our pipeline with the
crowdsourcing pipeline of Kong et al. [24] that combines
references generated by multiple workers into a single set,
using clustering and merging techniques. Their approach
produces 71.2% correct references, 8.6% FN errors and 18.8%
FP errors and 1.4% FPFN errors. While their crowdsourcing
pipeline produces 22.4% more correct references than our
automatic pipeline, their increase in accuracy comes at the
cost of significantly more annotation effort as they require
multiple crowd workers to independently generate references
for each (sentence, table) pair.

Figure 11 compares the accuracy of our reference extraction
pipeline to a baseline version of our pipeline that only includes
the matching on unique words strategy and does not include
other strategies in Stage 2 or the rule-based refinements of
Stage 3. This comparison shows that the complete pipeline
with the syntactic and semantic matching, as well as the rule-
based refinement, provides a substantial improvement in the
percentage of correct references over the baseline.

INTERACTIVE DOCUMENT READER
The goal of our interactive document reader (Figure 12) is to
assist viewers by displaying references between the document
text and the tables as they read the document. Given a PDF
document with a set of such references, our reader underlines
each sentence that references a table in red. Clicking on such

Figure 11. Comparison of correct, FN, FP and FPFN references pro-
duced by our complete pipeline and a baseline method using only the
unique words matching strategy combining all three datasets.

Figure 12. Our interactive document reader contains a main panel show-
ing the document and a side panel showing the table most relevant to the
sentences at center of the main panel. Red underlines indicate sentences
that refer to cells in a table. Clicking on such a sentence highlights it and
the table cells it refers to in yellow. Clicking on a cell highlights all sen-
tences that refer to it. Clicking anywhere else on the document removes
the highlight.

a sentence highlights it and the table cells it refers to in yellow.
Similarly, clicking on a cell highlights all the sentences that
refer to it. Clicking anywhere else on the document removes
the highlight.

To reduce the problem of split attention that occurs when a
table is located relatively far away in the document from the
referencing text, we include a side panel that replicates the
table most relevant to the sentence at the center of the main
panel. As the user scrolls through the pages in the main panel,
the most relevant table in the side panel automatically updates.
The table is scaled by default to fit in the panel, but clicking the
expand button expands the table to full size. The table is a fully
interactive copy of the table in the main panel and clicking on
a cell in either table highlights the relevant sentences in the
document and vice versa.

USER STUDY
We conducted a user study to compare our interactive docu-
ment reader with automatic linking of sentences to table cells
to a baseline reader (similar to Adobe Reader) that does not
provide such links. We consider two main hypotheses:



H1: Despite the errors produced in our automatic reference
extraction pipeline, our interactive document reader will help
users locate table cells relevant to sentences in the text more
accurately and quickly than the baseline reader.

H2: Since false positive (FP) errors can mislead readers by
connecting sentences to incorrect table cells, they will cause
more harm (lower speed and accuracy) than false negative
(FN) errors which simply force readers to manually identify
the connection between sentences and table cells.

Study Design
We used a within-subjects study design. We sampled two
groups of 12 (sentence, table) pairs from our corpus such that
the distribution of error types (correct, FN, FP, FPFN) in each
group roughly matched the overall distribution produced by
our automatic reference extraction pipeline (6 correct, 4 FN,
1 FP, 1 FPFN). We used the first group of references to gen-
erate 12 interface condition trials and the second group to
generate 12 baseline condition trials. Each trial presented a
single (sentence, table) reference pair, where the sentence was
underlined in red and the paragraph containing the sentence
was shown for context. The interface condition included the
interactive reference highlighting of our interactive document
reader, while the baseline condition did not include such high-
lighting. On each trial, the participant had to select the table
cells referenced by the underlined sentence.

Study Procedure
We recruited 14 adult participants, all fluent in English, from
three academic institutions. Each participant completed 24
trials, 12 in each condition. We counterbalanced the ordering
of the conditions and randomized the ordering of trials within
each condition for each participant to reduce ordering effects.
Before running the experiment, participants went through a
training session where they learned how to use both conditions
and correctly complete the trial task. During the experiment,
we measured the accuracy and speed of each trial. The par-
ticipants were aware that we were measuring both time and
accuracy, but we did not specifically ask them to prioritize
speed or accuracy. After completing all 24 trials, we asked
the participants to rate the helpfulness of our interface on a
5 point Likert scale and to express their opinions about the
usefulness of the interface in a free-form text response. The
experiment took about 45 minutes to complete and each par-
ticipant received a $20.00 Amazon gift card for participating
in the study.

Results
We find that our interactive reading interface significantly
outperforms the baseline interface in terms of accuracy and
speed (Figure 13). Accuracy in the interface condition (µ =
73.1%, σ = 23.61) was 26.4% higher than in the baseline
condition (µ = 46.7%, σ = 19.67, t(13) = 7.57, p < 0.001).
On average it took participants 22.9% (11.13 seconds) less
time in the interface condition (µ = 37.5s, σ = 11.69) than in
the baseline condition (µ = 48.6s, σ = 17.96, t(13) = 4.12,
p < 0.05). In their subjective assessments of helpfulness of
our interface for reading documents (on a 5 point scale with 5
= very helpful), participants were generally positive (µ = 4.1,

(a) Accuracy (b) Time

Figure 13. Users are significantly more accurate and faster at matching
sentence text to table cells using our interactive reference highlighting
interface compared to a baseline interface. These results indicate that
despite errors introduced by our reference extraction pipeline, our inter-
face facilitates document reading overall.

(a) Accuracy (b) Time

Figure 14. Comparison of user accuracy in matching sentence text to
table cells when our interactive interface presents references that are
correct, that contain FN errors only and that contain at least one FP
error. We find that FP errors are significantly more harmful (reduce
accuracy and speed) than FN only errors and that the difference between
presenting correct references and FN only is not significant.

σ = 0.17). In the free-form response, one of the participants
who had the interface condition first commented that after the
transition to the baseline condition, the increased amount of
effort required to complete each trial was noticeable. Together,
these results suggest that we can accept hypothesis H1.

We also find that presenting a reference containing FP errors
in our interface harms accuracy and speed much more than
presenting a reference containing only FN errors (Figure 14).
Specifically, a one-way RM-ANOVA finds a significant effect
for the types of references presented (Correct, FN – contains
only FN errors, FP+FPFN – contains at least one FP error) on
accuracy (F(2,26) = 4.89, p < 0.05). Participants suffered
a 24.5% hit in accuracy when the presented reference con-
tained an FP error (µ = 53.6%, σ = 36.50) compared to when
the presented reference was correct (µ = 78.1%, σ = 27.57,
t(13) = 3.061, p < 0.005). Similarly with FP errors they suf-
fered a 23.2% reduction in accuracy compared to when the
reference contained only FN errors (µ = 76.8%, σ = 28.53,
t(13) = 2.061, p < 0.05). These results suggest that FP errors
are far more harmful to accuracy than FN errors. In fact, we
found that when comparing accuracy for references containing
only FN errors to correct references, there is no significant
difference.



We find similar results for speed. A one-way RM-ANOVA
finds a significant difference in time required to complete the
trial for the three types of references presented (F(2,26) =
11.815, p < 0.001). Participants took 28.0 seconds longer per
trial when shown references containing FP errors (µ = 60.8,
σ = 30.39) than when shown correct references (µ = 32.8,
σ = 12.59, t(13) = 3.372, p < 0.005). Similarly, they took
27.8 seconds longer when shown references with FP errors
than when shown references containing only FN errors (µ =
32.9, σ = 11.50, t(13) = 3.707, p < 0.005). Moreover, we
saw no significant drop in the speed between being shown
correct references and being shown references with FN errors.
Together these accuracy and speed results suggest that we can
also accept hypothesis H2.

DISCUSSION
Our main goal in developing our interactive document reader
was to reduce split attention when reading documents contain-
ing tables. Our user study finds that users can match document
text to table cells more accurately and quickly using our inter-
face than they can using a standard baseline document reader.
This result indicates that our interface does reduce the split
attention problem.

In addition to the controlled user study, we have observed a
number of users as they interact with our document reader
interface. They all agreed that our interface was easy to use
and that they found the link connecting sentence text to table
cells to be useful. One compared our interface to standard
document viewers saying, “The interface allows me to read
the table while reading the text. Originally this was done in
the text-then-table order, but this was parallelized, making it
more efficient.” Another said, “In everyday life, if text includes
tables, I would usually trust the text and not read the table too
carefully, but this interface made me take time looking back
and forth.” These observations also suggest that our interface
reduces split attention and facilitates document reading.

From the user study, we also found that presenting references
containing FP errors is more harmful than presenting refer-
ences containing only FN errors. We believe that this is be-
cause FP errors can actively mislead readers by matching text
sentences to irrelevant table cells. In contrast, FN errors sim-
ply force readers to manually identify the connection between
sentence text and table cells. In the free-form text response,
one of the study participants wrote “I would prefer to have
missing information [than to have extra information] because
I can always fill in the gaps.” Being misinformed (FP errors)
is much worse than being uninformed (FN errors).

Another implication of this finding is that while there is some
room for improvement in the percentage of correct references
produced by our pipeline, 48.8%, it may be best to focus future
work on reducing the FP error rate of 20.7% before addressing
the FN errors. Moreover, as our user study shows, extract-
ing references between text and tables is challenging even
for people. In the baseline condition, participants produced
46.7% correct references (σ = 19.67) on average, suggesting
that our pipeline produces correct references at rates that are
comparable to human performance.

LIMITATIONS AND FUTURE WORK
Although our automatic reference extraction pipeline provides
good accuracy, there are several limitations that we would like
to lift in future work.

First, while our work provides evidence that our pipeline gen-
eralizes across different document styles, a larger corpus con-
taining additional types of documents (e.g. textbooks, news
articles, etc.) would allow us to verify the generalizability of
our pipeline across document types. Generating labeled data
from the larger corpus would also pave the way for developing
modern machine-learning based methods for this problem.

Second, since most sentences in a document are not related
to any table, we manually identified paragraphs relevant to
tables to ensure that there are a sufficient number of sentences
referring to tables. Future work includes devising a paragraph-
to-table matching method by using features such as mentions
of the table number or the distance between the text and tables.

Third, our pipeline does not handle some complex references.
While our work focuses on references within a single sentence,
anaphora resolution techniques [29] and/or a document-level
discourse parser [21] could be used to identify references that
span multiple sentences. Some references also require external
knowledge (e.g. table headers list the countries in the world
and the text refers to ‘Asian countries’). Knowledge bases such
as DBPedia [7], Freebase [9] or Wolfram Alpha [5] could be
used to resolve such references. References sometimes include
clauses such as ‘all but ...’ (exclusion) or ‘the second most
common’ (ranking) to indicate specific table cells. Applying
compositional semantic parsing [30] may be one approach for
resolving references that involve such logical operations.

Finally, additional user studies could help us further under-
stand exactly why users were more accurate with our interface
than without it. Such studies would need to be designed to
elucidate the mechanisms by which our reference highlight-
ing helps users. Moving beyond the table-cell selection task,
future studies could also examine the user’s ability to recall
facts or search for information using our interface.

CONCLUSION
We have presented a fully automatic pipeline for extracting
references between the text and tables in a document. Our
pipeline includes three main stages that analyze the structure
of the table, apply natural language processing techniques to
match sentence text to table cells and refine the matches using
the table structure. While our results are not perfectly accurate,
the majority of errors are due to false negatives (missing cells),
which we have found to be less harmful than false positives
(misleading cells) in the user study. We believe that this work
is an initial step towards more interactive documents that assist
readers in absorbing their content by linking and presenting
multiple sources of relevant information.
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