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ABSTRACT

There is a growing trend of utilizing Visualization-oriented Natu-
ral Language Interfaces (V-NLIs) to author charts. However, re-
searchers consistently highlight the lack of high-quality chart and
natural language datasets, which impedes the development of more
sophisticated and data-driven systems using V-NLIs. In this study,
we present a meticulously curated collection of human-generated
1,981 Vega-Lite specifications, derived from real-world data, and
use Large Language Models (LLMs) for generating natural language
queries for chart generation tasks. Unlike previous datasets that re-
lied on relatively simple and homogeneous templates, our Vega-Lite
dataset contains more complex and diverse (i.e., varying interactions,
composite views, and different chart types). Using this dataset, we
demonstrate generating natural language queries for chart genera-
tion, and how the results can be different when different input types
are used (e.g., Vega-Lite, Image, both Vega-Lite and Image).

Index Terms: Human-centered computing—Visualization; Human-
centered computing—Interaction paradigms—Natural language in-
terfaces

1 INTRODUCTION

Visualization-oriented Natural Language Interfaces (V-NLIs) have
garnered significant attention due to their user-friendly nature [22,
24,25] which lets the users focus on performing tasks rather than
learning how to interact with systems [5]. To develop pragmatic
V-NLlIs systems, leveraging high-quality chart datasets is vital to
effectively emulate natural user interactions [8]. Likewise, collecting
natural language (NL) queries that accurately simulate real user
utterances for a given task is essential to improve the usability and
performance of the system [23]. Based on such high-quality chart
and NL datasets, researchers are empowered to invent systems that
enable chart authoring, while also introducing novel data-driven
interaction techniques.

However, recent survey papers [3,6,22] have consistently pointed
out that there is a scarcity of publicly accessible high-quality chart
and NL datasets appropriate for building advanced V-NLIs systems.
Considering that many NL queries are generated grounded in the
available chart datasets [13, 16,23], the quality of NL datasets are
heavily dependent on the quality of chart datasets. We observe that
current chart datasets [9, 16, 28] focus on quantity (e.g., number
of charts) over quality, which are insufficient to cover real-world
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cases with enough complexity and diversity. Moreover, past research
typically use crowdsourcing to collect different types of NL inputs
(e.g., statements, phrases, questions, etc.) by asking crowd workers
to come up with generation queries. However, this approach is often
time-consuming, expensive [7,27], which impacts the scalability
of the datasets, as well as it is prone to issues such as participant
laziness and the collection of subpar queries [1].

In this work, we introduce a comprehensive collection of human-
generated 1,981 Vega-Lite specifications obtained from GitHub
(Fig. 2). Our dataset contains complex and diverse specs compared
to previous datasets in multiple aspects. In detail, our dataset covers
varying levels of complexity from a simple scatter plot without any
interaction (e.g., simple) to a chart with three views where data
points are linked with a click interactions (e.g., extra complex) (see
the charts highlighted with red stroke in Fig. 2), where we more
focus on complex levels (more than 86% are complex and extra
complex). Moreover, our dataset shows a higher average pairwise
edit distance between specs, which proves that our specs are highly
diverse from one another. In detail, it contains the largest number
of charts with composite views, interaction (e.g., tooltips, panning
& zooming, and linking), and diverse chart types (e.g., map, grid &
matrix, diagram, etc.).

We also propose leveraging LLMs to generate synthetic yet real-
istic NL queries instead of manual collection. In this preliminary
research, we focus on the task of generating NL queries for chart
generation. We compare three different input types (i.e., Vega-Lite
spec, Image, and both) to generate queries for four sample charts
with different level of complexities. We find that there is no sig-
nificant difference in the output between Vega-Lite spec and both
inputs, but using only image of the chart can contain an erroneous
information in the query. We plan to generalize this NL generation
pipeline so that it can be utilized to make diverse types of queries
needed for various tasks in V-NLIs research.

The main contributions of our work are summarized as follows:

* We collect 1,981 Vega-Lite specifications that are highly di-
verse and complex compared to previous datasets;

¢ We experiment with an LLM to generate NL queries for chart
generation task to understand its capability with lower cost
(e.g., time and money).

2 BACKGROUND AND RELATED WORK

According to Chen et al.’s recent survey [3], chart corpora are typi-
cally collected in three formats: bitmap graphics (e.g., . png), vec-
tor graphics (e.g., .svg), and programs (e.g., Vega-Lite specifica-
tions [18]). Among the surveyed corpora, the majority (48 out of
56) consisted of bitmap graphics, followed by vector graphics (10
out of 56), while programs were less prevalent, comprising only five
instances (some works included multiple formats).

Among many program formats, we are especially interested in
Vega-Lite, which is an abstract specification that enables the creation
of interactive visualizations using a high-level grammar. It is repre-
sented as a nested JSON object, consisting of numerous key-value



pairs, which can be also seen as a tree structure (Fig. 1) [16, 28].
Each key defined in the specification is referred to as a property [26],
serving a distinct role in generating charts. For example, mark
property is used to map data to graphical marks.

Vega-Lite provides additional advantages beyond those offered
by SVG formats, by facilitating easy modification and reusability
and enabling the creation of diverse chart variations [11]. It provides
interactive features like zooming, panning, and brushing, as well
as concatenating or faceting multiple plots/views. Furthermore, it
supports data-driven manipulation, allowing users to dynamically
update the data and reflect changes in real time. It can be seam-
lessly converted to other formats like bitmaps and SVG [19], while
converting from these formats to program specifications typically
requires manual effort or complex external algorithms [17].

There exist three synthetic Vega-Lite datasets. A critical lim-
itation of these artificial datasets is their reliance on pre-defined
templates and rules, leading to a high degree of repetition and a lim-
ited range of chart types and functionalities (see Table 1). In detail,
Poco et al. generated 4,318 Vega specifications [21] using the Com-
pass recommendation engine [26]. They randomly selected values
for a few variables (e.g., fonts, font size, legend positions, etc.) from
a curated set of options. These specifications were later converted to
Vega-Lite specifications in Data2Vis [9]. Zhao et al. [28] followed
a similar approach to generate the Chartseer dataset, consisting of
9,925 specifications based on Data2Vis, although it is specifically
designed for training a deep learning model and may not readily ren-
der into charts, making it less suitable for broader research adoption.
The nvBench dataset [16] presented 7,274 specifications, represent-
ing SQL queries as tree structures and mapping them into Vega-Lite
specifications.

We find two datasets that consist of human-generated real-world
specifications. These datasets reveal significant variation from one
specification to another, ensuring a high level of diversity in realistic
scenarios. For instance, Kim et al. [13] curated 52 charts from vari-
ous web sources, encompassing two chart types (bar chart and line
chart). Additionally, the Vega-Lite gallery example dataset [20], the
largest publicly available human-generated collection of Vega-Lite
data, provides 716 high-quality examples with diverse chart types
and interactions. However, due to the challenges associated with
data collection, these datasets have a limited number of specifica-
tions compared to synthesized datasets. As a result, researchers often
face difficulties in finding a comprehensive set of specifications for
their own research purposes.

Some NL datasets are also available for V-NLIs research, includ-
ing those introduced by Kim et al. and Lui et al. for chart question
answering and NL to visualization generation tasks, respectively.
Moreover, Quda [10] offers a dataset of 14K NL queries for various
visual data analytics tasks. Srinivasan et al. [23] recently presented
a dataset of 893 user utterances for natural language to visualization
generation. However, these NL datasets are often task-specific and
fragmented, posing challenges for researchers seeking to apply them
to their own tasks. The characteristics of NL queries designed for
each task can vary significantly, making a single NL dataset unsuit-
able for other tasks. This further reduces the availability of datasets
suitable for chart generation tasks. In our preliminary research,
we aim to address this limitation by utilizing LLMs to generate
task-specific NL queries for chart generation.

3 VEGA-LITE DATASET
3.1 Dataset Construction

Search Queries. We utilize the GitHub API! to create our Vega-Lite
dataset. Due to the API’s limitation of providing up to 1,000 results
per search query, we employ various techniques, as we elaborate

Uhttps://docs.github.com/en/rest

Table 1: A summary of the Vega-Lite dataset construction pro-
cess. (a) First we collect all possible cases of URLs including Vega-
Lite specifications. (b, ¢) Next, we have filtered unique URLs that are
allowed to redistribute for academic purpose. (d) Finally we iteratively
inspect each specification manually to check whether it is valid and
unique. Since we want to collect charts with a high level of diversity.

# of URLs / Vega-Lite specs

(a) URLs crawled 67,789
(b) URLSs w/o duplicate 18,420
(c) URLs w/ license 7,408
(d) Specs after manual inspection 1,981

below, to crawl Vega-Lite specifications in a mutually exclusive and
exhaustive manner to the best of our abilities.

When building search queries, we use the keyword
https://vega.github.io/schema/vega-lite/[version] to
indicate the version of the spec that Vega-Lite uses for rendering
purposes. We collect versions from v2 to v5: there are no v1 data to
be found. To partition the query into a more fine-grained manner, we
use keywords such as .csv and . json to gather specs with external
links. Similarly, we employ keywords like values and datasets
to identify ones with internally embedded data. We also leverage
additional keywords using the main properties defined in the version
5 Vega-Lite specification®. These properties encompass essential
elements for creating a single plot, including data, transform,
mark, and encoding, while there are properties like layer, facet,
concat, and repeat, which are specifically relevant to visualizing
composite views [18] (e.g., layered plots, trellis plots, or multiple
views). A comprehensive list of the properties we use can be found
on the official documentation page?.

Inclusion and Exclusion Criteria. We target files with extension
.json, vg.json, .vl.json, .vl, and .vg which denotes Vega-
Lite specifications. We also examine HTML and JavaScript files
containing Vega-Lite specifications manually to get additional specs.
Throughout the process, we exclude forked repositories to prevent
redundancy. We also filter out any data from the benchmark datasets,
such as Vega-Lite gallery [20].

Post-processing. To obtain a large number of unique sets of Vega-
Lite specifications, we follow a step-by-step approach. During the
initial stage, a total of 67,789 URLSs are collected. Despite efforts
to ensure a mutually exclusive and comprehensive set of specs,
duplicate URLs are identified and removed, resulting in 18,420
unique URLSs. Each URL is scrutinized to verify the license of the
corresponding repository, ensuring compliance with copyright regu-
lations for academic redistribution. This process yields 7,408 URLs.
Lastly, we verify their validity using the Vega-Lite editor [19]. This
involves identifying the URLs of the datasets used by each speci-
fication and making necessary modifications, ranging from minor
adjustments such as closing unclosed brackets to more significant
ones like debugging the entire code, in order to achieve successful
rendering. An overview of the post-processing and the number of
URLs and specifications obtained at each stage can be found in
Table 1. Our dataset is publicly accessible via the following link:
https://hyungkwonko.info/chart-11lm-data.

3.2 Quantitative Analysis

Benchmark Datasets. We compare three synthetic and two real-
world Vega-Lite datasets [9, 13, 16,20, 28] described in Section 2.
While checking these datasets, we discover instances of exact code

Zhttps://github.com/vega/schema
3https://vega.github.io/vega-lite/docs
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Figure 1: Example of Vega-Lite Specification. As previously noted in several works, Vega-Lite spec can be regarded to follow a tree structure.
We evaluate the diversity of the specs, e.g., using the number of keys and the depth of JSON structure.

Table 2: Summary statistics of our dataset and benchmark datasets that are publicly available. Two types of datasets are presented:
synthetic and real-world datasets. The best statistics within each type are highlighted in bold, while the best statistics across all datasets are also

underscored.
. . Synthetic data (machine-generated) Real-world data (human-generated)

Type Evaluation Metric - ;
Data2Vis [9] Chartseer [28] nvBench [16] \ Kimetal. [13] Gallery [20] Ours
Quantity # of specs 4,318 9,897 6,680 \ 52 709 1,981
Total # of keys across specs 101,881 147,676 98,074 769 26,469 107,802
Average # of keys in a spec 24 15 15 15 37 54
Simple (key < 16) 0 6,164 6,354 41 186 73
Complexity Medium (key < 24) 4,318 3,733 326 10 170 199
Complex (key < 41) 0 0 0 1 179 733
Extra complex (key > 41) 0 0 0 0 174 976
Average depth of JSON 4.00 3.00 348 3.13 5.01 5.19
Average branching factor 1.22 1.44 1.18 1.17 141 1.38
Total # of unique keys 24 12 18 31 275 362
Average pairwise edit distance 122.62 75.90 48.18 129.51 1,096.11 1,549.51
Diversity Composite views 0 0 0 0 136 746
Interaction (e.g., zoom, pan) 0 0 0 0 188 1,010
# of chart types 6 6 4 2 10 10

duplication within each benchmark. To ensure a fair comparison, we
implement a process to remove such redundancy. In detail, each spec
is sorted in alphabetical order by the keys and edited to maintain
consistent indentation. Next, we convert each file into a hash where
files with identical hashes are subsequently removed from the dataset.
Following this procedure, the number of specs in Chartseer dataset
decrease from 9,917 to 9,897, nvBench decrease from 7,241 to 6,680,
and the Vega-Lite gallery example dataset decrease from 716 to 709.
Quality Metrics. To comprehensively assess the Vega-Lite datasets,
we consider three different aspects: quantity, complexity, and di-
versity. Initially, we count the number of collected specifications
to determine the overall quantity of Vega-Lite specs, as previously
done by Luo et al. [16]. However, we argue that additional metrics
are necessary to gauge the quality of the Vega-Lite dataset. This
is because some specs include only mandatory properties to con-
struct a single plot without any interaction (e.g., data, encoding,
mark for a simple bar chart), while others contain multiple plots
or views linked by varying interactions. Therefore, the number of
keys in a spec can highly differ depending on whether it includes
properties for data pre-processing (e.g., aggregate, calculate,
etc.), interactivity (e.g., bind, select, etc.), or composite views
(e.g., concat, repeat, etc.). We can expect the Vega-Lite spec be-
comes more complex as the number of defined properties increases.

Therefore, we propose a new standard to understand the complexity
of a Vega-Lite dataset by counting the total number of keys present
across all specifications and the average number of keys in a singe
spec. To ensure a fair comparison, we only consider keys defined in
the version 5 specification. We also ignore keys associated with in-
ternally embedded datasets, such as values and datasets, along
with their corresponding keys. In addition to this, we also measure
the average depth and branching factor of the JSON structure as they
are commonly adopted to evaluate the complexity of a JSON file.
We also propose metrics for gaining insights into the diversity
of dataset in terms of both the range of properties within the entire
dataset and the variance between individual specs. Specifically, we
count the number of unique keys employed across the entire dataset
and calculate the average pairwise edit distance among all possible
pairs of specs. The number of unique keys indicates how many
distinct properties that can be defined in a Vega-Lite spec are used
across the specs. For example, if a handful of unique keys are used
within the dataset, this indicates a restricted recurrence of only a few
properties. In turn, it likely signifies a low level of diversity. The av-
erage pairwise edit distance provides an overview of the dissimilarity
between each pair at the code level. To perform this analysis, we
sort the keys alphabetically, replace their corresponding values with
empty values, and exclude keys associated with embedded datasets,
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Figure 2: Vega-Lite dataset divided by their complexity levels: simple, medium, complex, extra complex. The level is divided based on the
number of keys each spec contains. The number of keys, which are the criteria for dividing the levels, are set based on the quartiles (Q1, Q2, Q3)
of Vega-Lite example gallery dataset [20]. The charts with red stroke are used for the NL generation pipeline in Section 4.



as mentioned earlier.

Complexity Levels. We observe that the existing criteria used to
establish the complexity levels of chart datasets are somewhat sub-
jective and may not possess broad applicability [12,15, 16]. Instead,
we suggest using the number of keys as a criterion for categorizing
the complexity levels of charts, particularly in the context of Vega-
Lite specifications. This is because, as explained above, the number
of properties increases proportionately to the number of keys in a
specification. To establish the standard number of keys, we refer to
the Vega-Lite example gallery dataset [20] and calculate the quartiles
(Q1, Q2, Q3) based on the distribution of the number of keys. These
quartiles, specifically 16, 24, and 41, are utilized as reference points
to divide the specs’ level of complexity. For instance, a specification
with a total number of keys less than or equal to 16 is classified as
‘simple’ complexity. Likewise, a specification with a total number
of keys greater than 16 and less than or equal to 24 is classified as
‘medium’ complexity (Fig. 2).

Composite View, Interactivity, Chart Type Distribution. We
choose three additional factors by referring to previous works [2, 14]
to further assess the quality of the datasets. First, we examine the
presence of composite views, which offer diverse perspectives on
the same data simultaneously [4]. Secondly, considering the benefits
of collecting Vega-Lite specs over static bitmap images, we count
the number of charts that incorporate interactive techniques such as
tooltips, zooming, and brushing. Lastly, we evaluate the number of
charts types based on the taxonomy proposed by Borkin et al. [2].
Results. We present the results in terms of quantity, complexity,
and diversity, highlighting the superiority of our dataset compared
to the baselines. Regarding quantity, all three synthetic datasets
demonstrate a higher number of specs compared to the other three
real-world datasets. Among all datasets, Chartseer shows the highest
number of specs (i.e., 9,897), while our dataset has 1,981 specs
which outnumbers the other real-world datasets in terms of quantity.

In terms of complexity, our dataset exhibits the largest average
number of keys in a single specification (i.e., 54) and ranks second
in terms of the total number of keys across specs (i.e., 107,802),
which is 1.4 and 4.0 times larger than the largest previous real-world
Vega-Lite dataset, respectively. Chartseer presents the highest total
number of keys across specs (i.e., 147,676) with the smallest average
number of keys per specification (i.e., 15) among all datasets. Our
dataset includes the highest number of specs classified as complex
(i.e., 733) and extra complex (i.e., 976). The synthetic datasets do not
contain any specs in the complex and extra complex level. Data2Vis
and nvBench demonstrate the largest number of specs classified as
medium (i.e., 4,318) and easy (i.e., 6,354), respectively. Our dataset
also exhibits the highest average depth of JSON structure (i.e., 5.19),
while Chartseer showcases the highest average branching factor (i.e.,
1.44).

Lastly, with respect to diversity, our dataset demonstrates the
largest total number of unique keys and the highest average pairwise
edit distance among all datasets. Furthermore, our dataset includes
the largest number of specs featuring composite views (i.e., 1,010)
and interactions (i.e., 746), exceeding the Vega-Lite gallery dataset
by 1.8 and 5.3 times, respectively. None of the synthetic datasets
or Kim et al.’s dataset include specs with composite views and
interactions. Both our dataset and the Vega-Lite gallery dataset
cover the widest variety of chart types, encompassing ten types:
Area, Bar, Circle, Diagram, Distribution, Grid & Matrix, Line, Map,
Point, and Trees & Networks. Please refer to Table 2 for detailed
results.

4 NATURAL LANGUAGE GENERATION PIPELINE

In V-NLI research, natural language inputs such as queries and
statements are necessary in addition to the visualization dataset.
Rather than relying on costly human-generated NL data, we attempt
to leverage LLMs to generate this NL dataset. Our primary focus

is a task to generate charts based on users’ utterances. While we
illustrate this task as an example in our preliminary research, our
future goal is to broaden the scope of our pipeline to encompass
a range of tasks such as chart understanding and chart question
answering, within the field of V-NLIs research. In this section, we
introduce how to write an input prompt for chart generation, analyze
the generated NL queries, and discuss the implications of the results.
Prompt Design. To design the input prompt for generating NL
queries in visualization generation, we begin by informing the LLMs
about the task. Furthermore, to better simulate user utterances, we
draw upon a recent paper by Wang et al. [25] that addresses this task
by providing design practices for NL-based visualization authoring
tools. They suggest that 1) users generate charts in a top-down man-
ner, starting with basic elements such as encoding and chart type
before choosing design elements, 2) users expect real-time reflection
of their inquiries from the authoring tool, and 3) users use different
data labels (e.g., pronouns, adjectives) to denote visual properties,
which may vary among individuals. Based on these guidelines, we
give the following prompt to the LLMs: “We have an intelligent
system that translates a novice user’s NL query into a corresponding
visualization. Your task is to generate the input from the novice
user that would prompt the machine to produce the chart based
on the provided information. Follow a top-down approach when
generating charts, considering each step as a distinct inquiry of
a sentence, starting with fundamental elements such as encoding
and chart type before incorporating design elements; Ensure the
NL queries reflect real-time updates and provide immediate feed-
back to users’ inquiries through the authoring tool; Utilize diverse
data labels, such as pronouns and adjectives, to convey specific
visual properties, keeping in mind that these labels may vary among
different individuals. Use a colloquial language.”.

NL Generation Process. For our experiment, we select four sam-
ple charts representing different complexity levels, ranging from
simple to extra complex (see the top left charts in each level with
red stroke in Fig. 2). The purpose of this experiment is to compare
the results across different modalities and information. To facilitate
this comparison, we utilize Bing Chat*, which allows for both text
and image inputs in its chatting interface. We begin by providing
the task description and three detailed guidelines to the Bing Chat
for generating NL queries. Subsequently, we generate NL queries
under three different settings: 1) using only chart images, 2) us-
ing only Vega-Lite spec, and 3) using both chart images and their
corresponding Vega-Lite spec.

Results and Discussion. The total generated NL queries using three
different types of input are listed in Fig. 3. The generated NL queries
follow the instruction well, which is to draw a chart in a top-down
manner. For example, in the case of complex level chart, generated
NL queries using only Vega-Lite code follow 1) setting the chart type
(i.e., Can you show me a map of deforestation in South America?),
2) adding styles (i.e., Can you add a subtitle that says “Deforestation
2010-2015 (1,000 hectares per year), Source: Food and Agriculture
Organization of the United Nations” in italic font?), 3) adding colors
(i.e., Can you color the map based on the amount of deforestation?),
and 4) adding a tooltip (Can you add a tooltip that shows the country
name and deforestation rate when I hover over a country?). The
generated queries using other options like using only image and both
Vega-Lite and image present a similar approach (e.g., chart type —
color map — legend — title, chart type — tooltip).

Although some inquiries are merged into one, generated NL
queries using only Vega-Lite spec and using both the image and
its corresponding Vega-Lite code are similar throughout all four
different levels. Specifically, while the generated NL using only
Vega-Lite code results in three sequential inquiries—“Can you show
me a scatter plot of Apple’s profits and R&D investment?,” “Can
you plot the profits in millions of USD on the x-axis?,” and “Can you

“https://www.bing.com



Vega-Lite only Image only Both Vega-Lite and Image

Can you show me a scatter plot of Apple’s profits and R&D
investment?

Show me a scatter plot of profits in millions of USD on the x-axis and

Show me a donut chart representing the share of world GDP by 4 main
regimes. The regimes are Authoritarian Regime, Flawed Democracy,

Use orange for Authoritarian Regime, blue for Flawed Democracy, red

The largest section should represent the Authoritarian Regime and the

Show me a map of South America with a color gradient representing
the amount of deforestation in the region from 2010-2015. The map

Use a color gradient ranging from light green to dark blue, with dark
The legend should show a range from 0 to 1,868 thousand hectares

The title of the map should be ‘Deforestation in South America’.

Show me two graphs. The top graph should be a blue bar graph
The x-axis should be labeled ‘Computation time (s)’' and the y-axis

The bottom graph should be a blue scatter plot showing the total

Simple Can you plot the profits in millions of USD on the x-axis? investment into R&D in millions of USD on the y-axis.
Can you plot the R&D investment in millions of USD on the y-axis? Plot 12 blue data points on the graph.
Can you add a tooltip that shows the year when | hover over a point?
Can you show me a pie chart of the share of world GDP represented
by 4 main regimes?
Can you a_dd aumle that says “Share of World GDP Represented by 4 Full Democracy, and Hybrid Regime.
Medium Main Regimes"?
g)anq’you add a subtitle that says “Source: The Economist” in italic for Full Democracy, and green for Hybrid Regime.
Can you color the chart based on the regime type? N A
Can you add a tooltip that shows the GDP when | hover over a slice? smallest should represent the Hybrid Regime.
Can you show me a map of deforestation in South America?
Can you add a title that says “Deforestation in South America"?
Can you add a subtitle that says “Deforestation 2010-2015 (1000 should be divided into countries.
Complex hectares per year), Source: Food and Agriculture Organization of the
United Nations” in italic font? blue representing the highest amount of deforestation.
Can you color the map based on the amount of deforestation?
Can you add a tooltip that shows the country name and deforestation per year.
rate when | hover over a country?
Can you show me a chart of total computation time per dataset?
Can you add a title that says “Total computation time per dataset showing the total computation time per dataset.
(top), the number of sequences vs. computation time (bottom-left),
and mean sequence length per dataset vs. computation time (bottom- should be labeled ‘Dataset’.
right). Click on a field to enable filtering by datasets.”?
Extra Can you plot the computation time in hours on the y-axis? computation time per dataset, the number of sequences vs.
complex  Can you plot the dataset on the x-axis?

Can you add a tooltip that shows the computation time in hours when
I hover over a bar?

Can you add two scatter plots below the bar chart, one showing the
number of sequences vs. computation time and the other showing
mean sequence length per dataset vs. computation time?

computation time, and mean sequence length per dataset vs.
computation time.

The x-axis should be labeled ‘Dataset’ and the y-axis should be labeled
‘Mean sequence length (nt)".

Add a note on the top-right corner of the image that reads ‘Click on a
field to enable filtering by datasets’.

Can you show me a scatter plot of Apple’s profits in millions of USD on
the x-axis and their investment into R&D in millions of USD on the y-
axis?

Can you also include a tooltip that shows the year when | hover over
each data point?

Can you show me a donut chart representing the share of world GDP
represented by 4 main regimes: Flawed Democracy, Authoritarian
Regime, Hybrid Regime, and Full Democracy?

Can you also include a tooltip that shows the GDP when | hover over
each section of the chart?

Can you show me a map of South America with a color gradient
representing deforestation from 2010-2015?

Can you also include a tooltip that shows the country name and
deforestation in 1000 hectares per year when | hover over each
country on the map?

Can you show me two graphs, one on top of the other? The top graph
should be a bar graph showing the total computation time per dataset.
The bottom graph should be two scatter plots side by side, with the
left one showing the number of sequences vs. computation time and
the right one showing mean sequence length per dataset vs.
computation time.

Can you also include a note that says ‘Click on a field to enable
filtering by datasets?

Figure 3: The generated NL queries using three types of input. Four samples charts in each level are used for the task.

plot the R&D investment in millions of USD on the y-axis?”’—this is
represented as a single inquiry in the NL generated using both image
and Vega-Lite code—“Can you show me a scatter plot of Apple’s
profits in millions of USD on the x-axis and their investment into
R&D in millions of USD on the y-axis?”.

In case of the generated NL using only image input, the results
has a tendency to present information based on the portion of area
filled with a specific color, or a text that can be found in the image,
which includes inaccurate information. For instance, the generated
NL using only image for the medium level chart is “Use orange for
Authoritarian Regime and blue for Flawed Democracy”, where they
are the opposite in reality. Moreover, the largest section represent
the Authoritarian Regime, but it is the Flawed Democracy.

5 ONGOING WORK

To develop a generalized natural language generation pipeline for
V-NLIs research, we are conducting a thorough analysis of the task
space within this field. This involves examining existing research
through a recent survey paper [22] and reviewing papers from key
conferences in Human-Computer Interaction, Visualization, and
Data Mining and Management. Using search terms like “chart” and
“natural language,” we will filter papers that specifically address these
topics. The identified tasks will be categorized and clustered based
on their characteristics, allowing us to select representative tasks of
the given space. We will report whether LLMs can generate high-
quality natural language queries for these selected tasks, comparing
the generated queries quantitatively and qualitatively against a gold
standard NL dataset created by visualization researchers. We will
also discuss additional use cases for our dataset.

6 CONCLUSION

In this work, we present a dataset which comprises 1,981 Vega-Lite
specifications, which is better in terms of complexity and diversity
with more interactions, multiple-view visualization, and different
chart types. We also propose a natural language generation pipeline
so that future researchers can generate natural language queries that
can suit any target tasks they want to delve into for doing NLI for
data visualization research. As a future work, we plan to set diverse

target tasks that can cover larger spaces of natural language queries.
‘We hope our contributions can be helpful for building future systems
using V-NLIs.
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