
Sneak Pique: Exploring Autocompletion as a Data
Discovery Scaffold for Supporting Visual Analysis

Vidya Setlur1, Enamul Hoque2, Dae Hyun Kim3, Angel X. Chang4

1Tableau Research, Palo Alto, CA, USA 2York University, Toronto, ON, Canada
3Stanford University, Stanford, CA, USA 4Simon Fraser University, Burnaby, BC, Canada

vsetlur@tableau.com, enamulh@yorku.ca, dhkim16@cs.stanford.edu, angel_xuan_chang@sfu.ca

Figure 1. A screenshot of Sneak Pique with a dataset of coronavirus cases around the world. Left: A user types the query “show me cases in” and is
prompted with map and calendar autocompletion widgets providing previews of the geospatial and temporal data frequencies respectively. The user
could toggle to a text autocompletion dropdown to drill down into the geospatial or temporal data. Right: The user then clicks on China in the map
widget and proceeds to find a range of cases by typing “between.” The system displays a pair of date and numerical range widgets with corresponding
histograms of data frequencies to help guide the user to pick a valid range based on the underlying data.

ABSTRACT
Natural language interaction has evolved as a useful modal-
ity to help users explore and interact with their data during
visual analysis. Little work has been done to explore how
autocompletion can help with data discovery while helping
users formulate analytical questions. We developed a system
called Sneak Pique as a design probe to better understand
the usefulness of autocompletion for visual analysis. We ran
three Mechanical Turk studies to evaluate user preferences for
various text- and visualization widget-based autocompletion
design variants for helping with partial search queries. Our
findings indicate that users found data previews to be useful
in the suggestions. Widgets were preferred for previewing
temporal, geospatial, and numerical data while text autocom-
pletion was preferred for categorical and hierarchical data. We
conducted an exploratory analysis of our system implement-
ing this specific subset of preferred autocompletion variants.
Our insights regarding the efficacy of these autocompletion
suggestions can inform the future design of natural language
interfaces supporting visual analysis.

Author Keywords
autocompletion; data preview; natural language interaction;
visual analysis.

CCS Concepts
•Human-centered computing → Human computer inter-
action (HCI); Visualization;

INTRODUCTION
The process of information-seeking has moved away from the
traditional paradigm of assuming that the information goal is
well-formed; even when users are deliberately seeking infor-
mation, they do not necessarily know exactly what it is they
want [12]. The translation of ‘conceptual knowledge’ into a
query begins with some vaguely-felt need of wanting to know
something and gradually evolves to the point where one can
describe some attribute of the desired information [51]. Such
exploratory search is a complex and cognitively demanding
activity that depends on recall and sense-making [36].

Autocompletion is a useful mechanism for supporting this
complex task, displaying in-situ suggestions as users type their

queries in the flow of their search tasks. Due to its effective-
ness as a scaffold for guiding searchers to be productive, auto-
completion is ubiquitous in various search environments [10].
Recently, natural language (NL) interaction in visual analysis
tools has garnered interest in supporting expressive ways for
users to interact with their data [8, 2, 3, 4].

While information seeking in a visual analysis task bears simi-
larities to other forms of search, there are differences. Visual
analysis involves the need to understand the characteristics of
the underlying data and the various domains included in the
dataset (e.g., range, level of detail of the attributes) [49]. One
of the challenges for users in the context of visual analysis
tools is the cognitive load of formulating NL queries based on
their analytical inquiry [44, 26, 45].

Query reformulation is often based on the data domain being
either too broad, narrow, or ill-formulated [13, 45]. Users need
guidance to understand whether they are finding new insights
with the visualization results returned. A lack of guidance can
interfere with an accurate sense of progress toward the analyti-
cal goal [16]. Autocompletion in these NL systems is rather
basic and tends to focus on syntactic completion of queries
without any suggestions or helpful previews of the data [19].
There is a need for autocompletion in a visual analysis context
to support query formulation with data discovery, guiding the
user to make relevancy judgements.

To address this problem, we developed a novel interface sys-
tem called Sneak Pique1. Our goal is to help anyone, regard-
less of skill set to interact with data using NL by bringing the
fluidity of in-situ suggestions to analytical expressions typical
of visual analysis tasks. We implemented a set of text- and
widget-based autocompletion suggestions that provide data
previews of the results before they are realized in the visual-
ization. The system evaluates a query as it is being typed and
provides data previews that are dynamically updated based on
the syntactic structure of the query and the semantics of the
tokens. Figure 1 shows examples of autocompletion sugges-
tions generated in Sneak Pique as a user explores a dataset
of coronavirus cases around the world [7]. Here, the user is
prompted with autocompletion widgets providing appropriate
previews of the underlying geospatial, temporal, and numerical
data. For example, a missing token after “between” prompts a
range for the user to choose from. The system also provides
a mechanism to toggle from a widget to a corresponding text
autocompletion dropdown to drill down into hierarchical data.

Contributions
In this paper, we explore how autocompletion can be used
as a data discovery scaffold to help users during their visual
analysis workflows. In the simplest form of autocompletion,
the interaction surfaces a list of precomputed text suggestions
to the user. We extend that basic form to previewing a data
‘scent’ of what a query will retrieve during visual analysis.
Specifically, our contributions are summarized as follows:

1The name Sneak Pique is inspired by the premise that autocomple-
tion facilitates a lightweight preview (sneak peak) to pique a user’s
interest for information in their search journey [24].

• We explore a novel design space of autocompletion variants
to better understand user preferences for (1) the display of
data previews, (2) sort orders for suggestions, and (3) the
navigation of data hierarchies during visual analysis.
• We implement an autocompletion system Sneak Pique as a

design probe for implementing the various autocompletion
variants from the design space. Our system employs a
look-ahead parser to support basic syntactic completion of
partial queries as well as dynamically suggesting missing
data values in relevant text- and widget-based suggestions.
• We conduct crowdsourced studies of the autocompletion

variants to better understand user preferences and reduce
the vast space of design possibilities for these variants.
• The findings from the crowdsourced studies helped inform

the subset of autocompletion variants in the final implemen-
tation of Sneak Pique. A subsequent exploratory evaluation
of the system provides useful insights for future system
design of NL input systems for visual analysis.

RELATED WORK
The primary goal of autocompletion is to suggest valid com-
pletions of a partial query with the intention of minimizing
the time and effort for a user during a search task. There
are various approaches to how autocompletion achieves this
goal and can be categorized into three main categories: (1)
Autocompletion to support syntactic query formulation, (2)
Autocompletion to support information recall and preview,
and (3) Autocompletion to support visual analysis.

Autocompletion to support syntactic query formulation
Query autocompletion (QAC) is prevalent in Web search, desk-
top search, and mobile devices where typing is laborious and
error prone [17]. QAC techniques are employed in type-ahead
search by providing suggestions that contain prefix characters
from the query [55, 31, 33]. There has also been research
exploring the utility of word [10] and phrase-level [25, 40]
autocompletion. Systems have looked at ways to handle impre-
cision in search queries by developing error-tolerant QAC or
fuzzy type-ahead [17, 32, 58, 20]. Ranking algorithms for gen-
erating suggestions have looked at temporal information [47,
56], personalization [46], and diversification to improve user
recall in search [15]. While QAC techniques are useful for
fact-finding information needs, they tend to be less effective
for exploratory search. There is also additional complexity as
information preview changes with the context of the query in
play. In this paper, we explore how QAC can be extended to
support data exploration that dynamically guides users while
formulating syntactically correct NL utterances.

Autocompletion to support information recall and preview
Recall-oriented activity through information previews origi-
nated in early research in information science [11, 29]. DIA-
LOG kept track of query history and those queries were reused
by reference [21]. VOIR displayed the retrieval history of
documents using histograms of rank information [23]. Ari-
adne generated a visual representation of a search trajectory
to review earlier actions [53]. NRT implemented a history
mechanism that recorded previously-run queries, making it
possible for the searcher to scan the results list visually for

Figure 2. Sneak Pique system overview

new documents [43]. Nandi and Jagadish developed a search
interface of a data schema showing the number of records for
each possible suggested attribute [39]. AutoG showed pos-
sible graphs when the user drew a partial query graph [59].
Qvarfordt et al. designed a query preview widget that pro-
vided a visual summary of the results before the query was
executed [42]. Their system oriented users in the result page
by marking visited content and highlighting changes in the
search documents. Inky displays visual feedback for web tasks
with contextual information from a target web site [37]. Our
work is similar in spirit to these systems, providing a hybrid
experience between command line and GUI interfaces. How-
ever, prior work focuses primarily on document search goals
that are different from visual analysis tasks.

Autocompletion to support visual analysis
While NL interfaces for data visualization have received con-
siderable attention in recent years, they focus on limited syntac-
tic text autocompletion without any preview of the underlying
data [22, 44, 30, 48]. Power BI Q&A contextually displays
textual suggestions as one types a question [2].Other systems
support query reformulation where input utterances are trans-
lated into their corresponding canonical analytical expressions
that represent the underlying system’s language [8, 2, 45, 3,
4]. While these systems focus on guiding the user to type
syntactically complete and analytically valid queries, they do
not focus on providing a preview of the underlying data when
the query involves a filter expression. The closest work to
our research demonstrates how some graphical user interface
controls called ‘scented widgets’ can support data analysis
tasks [57]. Their system enhanced traditional visual widgets
like sliders, combo boxes, and radio buttons with additional
embedded visualizations to facilitate navigation in informa-
tion spaces. In this paper, we implement Sneak Pique as a
design probe to examine how both textual and visual variants
of autocompletion with data previews provide users guidance
within the context of NL interaction for visual analysis tasks.

SNEAK PIQUE SYSTEM
We introduce a system, Sneak Pique, that provides autocom-
pletion suggestions with data preview information in an NL
interface during visual analysis. Figure 2 illustrates Sneak
Pique’s architecture. The system employs a web-based client-
server architecture [6]. The input query is processed by an
ANTLR [5] parser (A) using a context-free grammar contain-
ing predefined rules as well as rules dynamically added based
on the attribute values from the underlying dataset [44, 26].
The parser accesses the dataset through the Data Manager (B),
which provides functionality to handle data query requests.
The Autocompletion Detection module (C) polls the query
as the user is typing and triggers grammar parse tree errors
when the query is partially complete. These parse errors are
passed to the Autocompletion Generator (D) that introspects
on the syntactic structure of the partial query along with rele-
vant grammar rules that would be satisfied if the query were
complete. The module determines the type of autocompletion
suggestion required to resolve the partial query into a com-
plete one. With the help of the Data Manager, the module
computes the necessary data preview information that would
be displayed in the autocompletion suggestion. The autocom-
pletion suggestion is then rendered in the user interface of the
client (E). Any interaction that the user performs with these
autocompletion suggestions is captured by the Event Manager
(F). The query upon execution, updates the D3 visualization
result (H) through the Analytics Module (G) [14].

Autocompletion detection
Sneak Pique employs a left-to-right LL(*) parser [9, 41], per-
forming a leftmost derivation of the input search query. We
choose an LL(*) parser for generating autocompletion sugges-
tions as this class of parsers can gracefully throttle up from
conventional fixed k ≥ 1 token lookahead to arbitrary looka-
head and is able to backtrack if a suitable parse path cannot
be constructed. The input to the parser is a grammar aug-
mented with predicates with corresponding lookahead actions
to trigger events being sent to the Suggestion Module. Each

(a)

(b)

Figure 3. The parser computes lookahead parse trees and predicts to-
kens for triggering autocompletion. The green nodes depict grammar
rules, the orange nodes depict lexicons, and the red nodes indicate parser
errors. (a): Autocompletion suggests correlation to generate a valid
parse for “show the cor.” (b): As the user continues typing, based on
the underlying data semantics, countries from the location data are sug-
gested for “show the correlation for."

grammar rule encapsulates an analytical intent, similar to other
NL visual analysis grammar systems [44, 26, 45]. The rules
are composed of lexicons2 that are either static (i.e., predefined
in the grammar for built-in analytical functions such as ‘in’,
‘correlation’, and ‘average’) or dynamic (i.e., computed from
the attributes and values from the database at real-time). The
parser converts the input grammar to an equivalent augmented
transition network (ATN), an efficient graph representation for
grammars used in parsing relatively complex NL queries [28].
The state model is computed using a flow analysis that traces
the ATN graph representation through all nodes reachable from
the top-level node. Given a grammar G = (N,T,P,S,Π,µ),
the ATN state machine, AG = (Q,Σ,Λ,E,F) has the elements:

• Q is the set of states
• Σ is the set of tokens N∪T ∪Π∪µ

• Λ is the transition relation mapping Q× (Σ∪ ε)→ Q
• E = pA|A ∈ N is the set of entry states
• F = p′A|A ∈ N is the set of final states

AG is computed for each nonterminal lexical element from
the grammar, creating a state model for each Σ. The nonter-
minal symbols form the syntactic structure of the parse and
are replaced by terminal symbols, i.e., the leaf nodes in the
parse tree. Nonterminal edges p→ p′ are function calls based
on Λ that push the return state p′ onto a parse state stack so
it can continue from p′ after reaching the stop state for the
state flow. The parser simulates actions in the ATN to predict
the next tokens in Q and computes a lookahead parse tree.

2In linguistics, a lexicon is a vocabulary of words and phrases that
have known semantic meaning.

Prediction errors occur in the ATN when a sequence does not
resolve to a corresponding grammar production rule for the
current nonterminal. The LL(*) prediction state model reports
an error at the specific token and scans ahead to determine
if there are any nonterminals that can resolve the error. For
autocompletion to trigger, the shortest lookahead sequences
are identified that would generate valid parse trees. The auto-
completion detection algorithm is generalizable to both static
and dynamic lexicons. For example, in Figure 3a, the query
“show the cor” generates a parser error at the nonterminal node
cor as the token does not match any grammar production rule.
The parser computes a lookahead to find the static lexicon
correlation. In Figure 3b, “show the correlation for” re-
sults in an error further down in the parse tree as the query
is missing a country name, a dynamically generated lexicon
from the dataset. Parse tree error information provides input to
the Autocompletion Generator for rendering the suggestions.

Autocompletion generation
After detecting when to trigger autocompletion in the parsing
process, we determine how the autocompletion suggestions
should be presented in the interface. One of the key guiding
principles for designing autocompletion interfaces is recogni-
tion over recall: the notion that people are better at recognizing
things they have previously experienced than they are at re-
calling them from memory. Autocompletion also helps with
information discovery with unfamiliar data, providing guid-
ance when no recall exists [52].

Design patterns for autocompletion
We draw inspiration from an established set of best practices
for implementing autocompletion [38]. The following design
patterns emerged while iteratively designing autocompletion
suggestions in Sneak Pique.

• D1: Provide suggestions in context of the partial search
query. Autocompletion should assist users when searching
by presenting items that match the users input as they type.
As the user types in more text into the search field, the list
of matching items is narrowed down.
• D2: Sort order. Autocompletion should sort items with the

most relevant or likely match at the top of the list. This will
allow the user to quickly select their match.
• D3: Semantic grouping. Autocompletion should group

similar items into categories for easy scan and lookup.
• D4: Reduce visual noise. Autocompletion should not add

cognitive overload and only display information as a pre-
view, not as a final result.
• D5: Manageable list. Autocompletion should limit the num-

ber of matching items to display, especially when working
with a large number of data values.
• D6: Lightweight interactivity. Autocompletion should sup-

port lightweight interaction allowing users to select an item,
saving time and keystrokes. Autocompletion should remain
unobtrusive so that users can still type in a complete query.

Determine autocompletion type
Combining autocompletion design patterns with best practices
for information visualization display [16, 34], we implement
various text and widget-based autocompletion representations

Figure 4. Our design space for autocompletion where each row shows various text and widget-based representations by data type. Data Preview (DP)
variants display data frequency numbers of the values.

in D3 [14]. Using Sneak Pique as a design probe, we imple-
ment autocompletion variants based on the data type of the
missing dynamic lexicon in the input query. To explore the
utility of displaying the data preview, we generate these vari-
ants with and without data frequency numbers that indicate
how often the values occur in the dataset. We also generate
various sort orders based on the data type. Figure 4 depicts
the following set of variants:

• Categorical: A text list or a bar chart shows suggestions
for a categorical attribute with various sort orders. If a
data preview is present, numbers are displayed in the list or
encoded as bar lengths (Row 1).
• Numeric: Text or a slider widget shows the data value

range for an attribute. A variant of the slider widget shows
a histogram to encode data frequency (Row 2).
• Geospatial: A list or a map chart widget3 shows location

values. If a data preview is present, numbers are displayed in
the list or as a visual encoding on the map. For hierarchical
data4, a nested listed view or map widget is provided to
drill-down (e.g. from country to city) (Row 3).
• Temporal: A list or a calendar widget shows time values. If

a data preview is present, the information is displayed in the
list or as color encodings in the calendar. Based on temporal
intent, the calendar widget defaults to the appropriate level
of detail. For example, “cases on” shows a calendar with
a date view while “cases in” shows the month view. For a
temporal range, the system displays a slider (Row 4).
• Semantic grouping: In NL systems, geospatial and tempo-

ral intent can be ambiguous [45]. For example, the query
“show earthquakes in” could indicate either a missing lo-
cation or time. We address this ambiguity between the
geospatial and temporal filter grammar rules by semanti-
cally grouping geospatial and temporal values in the auto-
completion suggestions as a text list or as a combination of
map and calendar widgets (Row 5).

3We employ an Equal Area map projection that tends to be conducive
for click interaction in a small display area [54]
4Hierarchical data is a tree structure representation of data records.

The system also provides partial text matches to dynamic data
values and static analytic concepts. For example, when the
user types “ma” the system shows matched suggestions for
both Massachusetts and maximum.

Figure 5. An example of data preview computation in Sneak Pique. Wid-
gets with data previews are triggered after the nodes highlighted in red.
(a) Here, the user starts with a query “show fatal cases in,” which dis-
plays map and calendar widgets. In the background, the system applies
a filter to select only death cases and then applies appropriate aggre-
gation methods to show the sum of cases as data previews in the wid-
gets. (b) Next, the user clicks on China in the map widget resulting in a
complete query. (c) When the user adds “between,” the system predicts
ranges for China in the numeric and temporal widgets.

Compute data preview
The system computes the data frequency for the attributes
associated with the predicted dynamic tokens and displays
the information. The data preview generation dynami-
cally updates the data preview results based on the con-
text of the current query. The system applies appropri-
ate aggregate and filter analytical functions similar to [26].
Figure 5 illustrates this process. Given the query “show
fatal cases in,” the system executes the analytical func-
tion FilterCAT(caseType,==,death), applying a filter on
‘death.’ Sum of cases is aggregated by country in the map
widget and by month in the calendar widget.

Before generating data previews, the system checks for the
presence of attributes in the query to prevent duplicates from
being added when interacting with the autocompletion widgets.

In Figure 4c, for the query “show me fatal cases in china
and,” the system applies FilterCAT(caseType,==,death),
but does not allow for FilterGEO(country,==,China) as
China is already present in the query.

EVALUATING AUTOCOMPLETION VARIANTS
No guidelines exist for the appropriate way to show autocom-
pletion suggestions specifically designed for visual analysis.
It is unclear what user preferences are for each of these au-
tocompletion variants and how those preferences vary based
on data type, sort order, or actual representation. Our goal is
to probe some of these characteristics of what an appropriate
autocompletion suggestion would look like for formulating
sensible defaults in a visual analysis NL interface. Objective
measures in terms of speed or accuracy are not applicable for
this study, since we are interested in what people think is the
most appropriate autocompletion variant. A good outcome
of these studies is a strong agreement among participants in
certain conditions to help formulate a set of reliable design
guidelines. As a step in that direction, we ran three experi-
ments to tease apart user preferences for the various factors
that influence the choice for autocompletion suggestions:

• Experiment 1 compares autocompletion variants with and
without data frequency information displayed to understand
if such data previews are useful to the user.
• Experiment 2 examines the sort order that would be useful

to apply to items shown in text autocompletion suggestions.
• Experiment 3 compares autocompletion variants that dis-

play data values with and without hierarchies to better un-
derstand the handling of hierarchical data in the suggestions.

We hypothesize that participants will find data preview infor-
mation to be useful across all autocompletion variants. We
also hypothesize that participants would prefer items sorted in
descending order of their data frequencies as more prevalent
data values should show up higher in the suggestions; except
for temporal items that should be in chronological order. We
hypothesize that hierarchical text suggestions would be easier
to navigate than widgets. However, participants might find the
calendar widget helpful for navigating temporal hierarchies.

Experiment Design
For each of the experiments, participants were recruited from
Amazon Mechanical Turk [18]. Participants were English
speakers in the U.S. with at least a 95% acceptance rate and
500 approved tasks. We payed a rate equivalent to $1.50 for
10 minutes of effort. The stimuli did not require excluding
participants for color deficiencies. Participants could complete
only one trial to avoid biases that might arise from repeated
exposure to the task.

We used an earthquakes dataset [50] with magnitudes by loca-
tion and time in the U.S. as this is likely to be understandable
to a broad population. The experimental procedure was:

• Training task: A chart shows a scatterplot of the relationship
between life expectancies and income for various countries
with practice questions to ensure understanding of autocom-
pletion suggestions.

(a) textno preview (b) textpreview with nulls

(c) calendarno preview (d) calendarpreview

(e) sliderno preview (f) sliderpreview

Figure 6. A sample set of comparison pairs from Experiment 1. (a)
Text variant with no data preview, (b) text variant with data frequencies,
showing a null value Georgia, (c) calendar widget with no data preview,
(d) calendar widget with data frequency encoded by color, (e) slider wid-
get to select a numerical range, (f) slider widget with a histogram pre-
view of data frequency within the range.

Comparison 1 Comparison 2
textno preview textpreview without nulls (75.0%)

textno preview textpreview with nulls (66.7%)

textpreview with nulls textpreview without nulls (75.0%)

calendarno preview calendarpreview (91.7%)

sliderno preview sliderpreview (66.7%)

mapno preview mappreview (83.3%)
Table 1. Comparisons of autocompletion with and without data previews.
The top user preferences are highlighted in bold. In general, partici-
pants preferred autocompletion variants with a data preview and nulls
removed from the list of text suggestions.

• Presentation of the overall task description and instructions.
• Actual task: A new page showing a search box with the

utterance, “find earthquakes [in/between]...” The participant
is shown two image autocompletion choices (see Figures
6,7,8 for examples) in randomized order asking the partic-
ipant to pick their top preferred choice. A freeform text
response box is provided for reason for preference.

Due to space constraints, we show a sample set of stimuli for
each experiment in the paper. Details including the complete
set of comparisons are available in the supplementary material.

Experiment 1: Evaluating the utility of data preview
The experiment consisted of of six comparison pairs where
text, calendar, and map autocompletion variants were shown

(a) textDF (b) textSG DF

(c) barsalpha (d) barsDF

Figure 7. A sample set of comparison pairs from Experiment 2. (a) Text
variant sorted by data frequency (DF), (b) text variant showing seman-
tic grouping (SG) and sorted by data frequency, (c) text variant sorted
alphabetically with bars showing data frequency, (d) text variant sorted
by data frequency with bars showing data frequency.

with (Figures 6b,d,f) and without data frequency information
(Figures 6a,c,e). The data frequency is shown as numbers
alongside the text items. We also considered variants that
included and excluded null data values in order to understand
users’ preferences for nulls in the previews (Figure 6b). The
information is color encoded in both the calendar (Figure 6d)
and map widgets, wherein a darker color indicates a higher
data frequency. In the slider widget, the data frequency is
represented as a histogram (Figure 6f).

Results: Data previews were preferred without null values
We collected data for 72 participants with an even spread
across all comparisons. As hypothesized, participants pre-
ferred seeing data previews in all of the autocompletion vari-
ants except when nulls were shown in the text drop-downs.
Feedback from participants indicated that they expected the
autocompletion previews to simply exclude the null values
to minimize visual clutter. The user preferences across each
of these comparisons are shown in Table 1. There was par-
ticularly a strong preference for previews in calendars for 11
out of 12 participants (91.7%), followed by maps with 10 out
of 12 participants (83.3%). As participant P63 stated, “The
results show me what’s in the data, but the colors on numbers
are useful to let me know how much of it is there.” Eight out of
12 participants slightly preferred the text dropdown with pre-
views showing nulls compared to the variant without a preview.
Participants indicating a preference for no preview found the
display of nulls in the drop-down to be not useful. Similarly
eight out of 12 participants preferred the slider variant with
the data preview shown, with the rest indicating that they liked
the simpler design without the preview.

Comparison 1 Comparison 2
textalpha textDF (58.3%)

textDF textchrono (58.3%)

textSG alpha without labels textSG alpha with labels (100.0%)

textalpha textSG alpha with labels (75.0%)

textalpha (66.7%) textSG alpha without labels

textSG DF without labels textSG DF with labels (91.7%)

textDF textSG DF with labels (66.7%)

textDF textSG DF without labels (75.0%)

textSG chrono without labels textSG chrono with labels(91.7%)

textchrono textSG chrono with labels (83.3%)

textchrono textSG chrono without labels (83.3%)

barsalpha barsDF (83.3%)
Table 2. Comparisons with top user preferences highlighted in bold for
various sort types: alphabetical (alpha), by decreasing order of data
frequency (DF) and chronological order (chrono) along with semantic
grouping (SG). Participants preferred SG, with labeled preferred over
unlabeled. In the absence of SG, DF sort was preferred; although
chronological ordering was preferred for temporal items.

Experiment 2: Examining sort order preferences
This experiment was conducted to better understand user pref-
erences for sort order in a list of text autocompletion sugges-
tions. Various sorting preferences were evaluated: alphabeti-
cal, data frequency, chronological ordering as well as semantic
grouping of related items such as places and time concepts
(Figure 7). A total of 12 comparison pairs were used as stim-
uli in the experiment. Given the precedence of research that
chronological sorting is preferred over alphabetical sort [35],
we did not compare those two variants, keeping the total num-
ber of comparisons to a manageable number.

Results: Semantic grouping with labels was most preferred
144 participants took part in this experiment with an even
spread across all comparisons. The user preferences are shown
in Table 2. Participants preferred semantic grouping of related
items and found labeling of the groups to be useful. P119 com-
mented, “I wanted to see by both year and country and liked
having that choice.” P24 stated, “It’s easier to have the dates
separate from the other areas so I prefer this one.” Semantic
grouping without labels was preferred when compared with
plain text variants without any semantic grouping, sorted by
data frequency or chronological order. We did find a surprising
result for alphabetical sort, where eight out of 12 (66.7%) par-
ticipants preferred plain text over semantic grouping without
the labels displayed. Participants in their feedback mentioned
that the unlabeled semantic groups were difficult to scan. P34
explained their rationale by commenting, “The groups with-
out labels was confusing and the alphabetical sort was easy
to read.” For temporal data, there was a slight preference
for chronological order rather than sorting by data frequency
(seven out of 12 (58.3%). For non-temporal data, sorting
by data frequency was slightly preferred for both the plain
text variant (Seven out of 12 participants) and the text variant
showing data frequency bars (Eight out of 12 participants).

(a) textcat hierarchy

(b) barscat hierarchy (c) barsno cat hierarchy

(d) mapgeo hierarchy (e) mapno geo hierarchy

Figure 8. A sample set of comparison pairs from Experiment 3. (a) Text
variant with a categorical hierarchy for states and cities, (b) text vari-
ant with data frequency bars. Clicking on an item expands its children,
(c) text variant with data frequency bars showing only the top level of
earthquake types, (d) a map widget showing cites overlaid on states with
one of the values shown in a tooltip. A user can switch between state
and city levels to select a value, (d) a map widget showing only state level
information as indicated by the tooltip.

Experiment 3: Evaluating the display of hierarchical data
We ran this experiment to better understand user preferences
for both autocompletion display and interaction with and with-
out hierarchical data. We limited the experiment to two-level
hierarchies to minimize the complexity of the task. The ex-
periment consisted of 10 comparisons, comparing plain text
autocompletion (Figure 8a), text with bars indicating data
frequencies (Figures 8b and c), calendar and map widgets
(Figures 8d and e) with and without hierarchies. We showed
animated gifs to help the participant understand the navigation
interaction between the hierarchies rather than static images
where the participant would have to view all the hierarchy
levels at the same time. We did not have a no-hierarchy variant
for the calendar widget as hierarchical temporal interaction is
a ubiquitous modality for calendar interaction [27].

Results: Text autocompletion was preferred for hierarchies
120 participants took part in this experiment with an even
spread across all comparisons. The user preferences across
each of these comparisons are shown in Table 3. 10 out of
12 participants (83.3%) indicated that they preferred seeing
hierarchies in the text autocompletion variants compared to no
hierarchies and those preferences were consistent across cate-
gorical, temporal and geospatial hierarchies. As hypothesized,

Comparison 1 Comparison 2
textcat hierarchy (83.33%) textno cat hierarchy

textgeo hierarchy (83.33%) textno geo hierarchy

texttime hierarchy(83.33%) textno time hierarchy

textcat hierarchy (66.67%) barscat hierarchy

textno cat hierarchy (83.33%) barsno cat hierarchy

barscat hierarchy barsno cat hierarchy (91.67%)

texttime hierarchy calendartime hierarchy (100.0%)

textgeo hierarchy (83.33%) mapgeo hierarchy

textno geo hierarchy mapno geo hierarchy (91.67%)

mapgeo hierarchy mapno geo hierarchy (58.33%)
Table 3. Comparisons of autocompletion with and without hierarchies;
top user preferences highlighted in bold. For space considerations, cat,
geo, time stand for categorical, geospatial and temporal hierarchies re-
spectively. Plain text variants were generally preferred for showing hi-
erarchies. The map widget was preferred for state-level data and the
calendar widget for temporal hierarchies.

when hierarchies were shown, text autocompletion was con-
sistently preferred over bar and map widgets. P91 explained,
“It was simpler. I figured I could drill down to find what I
wanted.” P8 indicated “I think that it’s easier to navigate each
level by name than with a map.” All participants preferred
the calendar widget over the text autocompletion for temporal
hierarchies. 11 out of 12 participants preferred the map widget
over the text autocompletion when no hierarchy was shown.
P69 stated, “Not gonna lie, I haven’t memorized the US map
and seeing where the data is [in the widget], helped.” Text
autocompletion with bars was not preferred when compared
to plain text autocompletion with or without a data hierarchy.
Participants said, “It’s far easier to compare with the raw totals
than shading [P23]” and “the numbers are all so close that the
bars only served to be a distraction [P20].”

Autocompletion variants for the final implementation
User preferences from the three experiments helped identify a
subset of autocompletion variants in the final implementation
of Sneak Pique. Referring to Figure 4, we finalized text (Row
1c), histogram sliders (Rows 2c and 4g), map (Row 3e), calen-
dar (Row 4f) widgets for displaying categorical, numerical and
temporal ranges, geospatial, and temporal value completion
respectively. Details are as follows:

• Data previews are useful: We updated all autocompletion
variants to display data previews. Based on user feedback,
text autocompletion was shown with nulls filtered out. As
none of the participants chose bars for data frequency num-
bers, that variant was eliminated in the final implementation.
• Sorting preferences: Geospatial and categorical text au-

tocompletion was sorted by data frequency. For temporal
data, chronological sort was applied (Row 4b).
• Handling hierarchical data: Text autocompletion sugges-

tions displayed geospatial and categorical hierarchical data,
while the calendar widget showed temporal hierarchical
data. We added a toggle button for the map and calendar
widgets (Row 5d) to switch to a semantically grouped text
view for navigating hierarchical data (Row 5b).

SYSTEM EVALUATION
We conducted a user study of Sneak Pique with the following
goals: (1) collect qualitative feedback on the autocompletion
suggestions for various visual analysis tasks and (2) iden-
tify system limitations. This information would help provide
insights as to how autocompletion interaction ideas could inte-
grate into a more comprehensive NL visual analysis interface.
The study had two parts: Part 1 examined the various auto-
completion types that we implemented in the final version of
Sneak Pique: map, calendar, and range widgets, along with
text autocompletion for hierarchical data navigation. Part 2
was observational and aimed to see how people would utilize
the autocompletion mechanisms in an open-ended way.

We initially considered a comparative experiment with other
NL systems; however, a study of Eviza [44] had already re-
vealed how basic text query autocompletion was a commonly
used feature for helping users formulate utterances. Other
systems [8, 2, 4] provide complete suggestions rather than
token-based autocompletion employed in Sneak Pique. Com-
paring with such systems would only highlight the lack of
autocompletion to support data discovery in the former sys-
tems rather than leading to new insights. In the future, we will
evaluate specific features and the types of queries users ask by
comparing Sneak Pique to a feature-removed version of itself.
Because the main goal of our study was to gain qualitative
insight into the advantages of each type of autocompletion, we
encouraged participants to think aloud with the experimenter.

Method

Participants
We recruited eight volunteers (four males, four females, age
24-55). All were fluent in English (five native speakers) and
all regularly used NL interfaces with autocompletion such as
Google. Five used a visualization tool on a regular basis and
the rest considered themselves beginners.

Tasks
Each participant used a dashboard showing coronavirus out-
breaks for the following parts of the study:

• Part 1 - Target criteria tasks: We provided four target
tasks; participants interacted with Sneak Pique to generate
partial queries to trigger the autocompletion for answering
questions on place, time, and numerical filtering. These
tasks were chosen to cover the usage of all the autocomple-
tion variants in Sneak Pique. The questions posed to the
participants were intentionally vague so that participants
would not simply type the question and find the answer di-
rectly in the dashboard without using autocompletion. Each
set started with a new query (following a reset by clearing
the search box or typing “start over”, similar to other NL
systems [8]) and each of the remaining tasks transitioned
the criteria through one of the task types. To avoid priming
participants with specific wording, criteria were presented
orally (see supplemental material).

• Part 2 - Open-ended tasks: Here, our goal was to qualita-
tively observe how people would use autocompletion in an
unscripted interaction with the dashboard.

Procedure and Apparatus
We began with a short introduction of possible interactions.
Participants were instructed to phrase their queries in what-
ever way that felt most natural, to think aloud, and to tell us
whenever the system did something unexpected. We discussed
reactions to system behavior throughout the session and then
concluded with a semi-structured interview. All the study trials
were done remotely over a shared screen videoconference to
conform with social distancing protocol due to COVID-19. All
sessions took approximately 30 minutes and were recorded.

Analysis Approach
We employed a mixed-methods approach involving qualitative
and quantitative analysis, but considered the quantitative anal-
ysis mainly as a complement to our qualitative findings. The
primary focus of our work was a qualitative analysis of how
autocompletion with data previews influenced people’s ana-
lytical workflows. We conducted a thematic analysis through
open-coding of session videos, focusing on strategies partic-
ipants took. The quantitative analysis consisted of the query
lengths and how often participants used the autocompletion
variants. Given the remote nature of the study setup, we did
not measure the time taken for task completion.

Results
Overall, participants were positive about the autocompletion
interaction and identified many benefits. Sneak Pique allowed
participants to introspect on the data as they were typing (“This
is cool...provides me a way to see what I will get while I am
typing my question” [P′1]5), helped them proactively discover
what was in the data (“By typing, I can already filter to a
specific country and see what’s in there without having to see
the result and try again....I don’t have to shoot darts in the dark”
[P′4]), and could save time (“I could finish the tasks really fast
as the autocompletion guided me to see where to look.” [P′7]).

Part 1 - Target criteria tasks
Six out of the eight participants were able to complete all
tasks successfully with all participants interacting with map,
calendar, range, and hierarchical widgets to complete the tasks.
We observed that tasks were easier to complete when the data
frequency information in the autocompletion widgets was visu-
ally discernible. One participant struggled to visually compare
countries or months when picking values with either a high or
low incidence of coronavirus cases. Another participant had
difficulty accessing hierarchical data in Sneak Pique.

Part 2 - Open-ended tasks
The open-ended task demonstrated how autocompletion was
helpful for data discovery while users typed their queries. We
observed that participants surfaced autocompletion for both
syntactic query completion and for completing filter expres-
sions by place, time, and range. The number of individual
queries per participant ranged from 8 to 23 (µ = 11.3) with
46% of them being reformulations of previously typed queries
by editing in place. Overall, a good number of partial queries
used autocompletion with data previews to help resolve into
complete ones (69%).Usage of widgets was roughly split even
5We use the notation P′X to indicate participant IDs in these study
results to distinguish from those in the Mechanical Turk studies.

across calendar (34%), sliders (33%), and map (29%) widgets;
the rest being text autocompletion for accessing hierarchical
data. Comments relevant to this behavior included, “It was
convenient to type to an extent and rely on the calendar to
go to a specific date that was interesting. I hate typing dates”
[P′4] and “Getting a range right is a hit or miss for me. Helpful
to see where most of the data is and pick with slider” [P′1].
We also observed participants directly typing the NL query for
specific questions such as “show me the cases in New York
last month” and “highest cases in India” with 33% of the total
number of queries belonging to this category.

The study also revealed several shortcomings. Overall, 18%
of the queries were unsuccessful with Sneak Pique unable to
understand the requests. A small percent of them (8%) were
due to related concepts that were not understood. For example,
the system was unable to interpret the inflected form of ‘death’
in “people who died in US” [P′5]. The remaining unsuccessful
queries consisted of unsupported analytics such as “show me
the places where cases are declining” [P′3] and “what is the
average rate of deaths in march for new york?” [P′8].

DISCUSSION AND FUTURE WORK
An evaluation of Sneak Pique confirmed our intuition that
people find data previews useful in autocompletion while per-
forming visual analysis. Results suggest that participants put
more thought into the search terms when the preview was
present; they were engaged in more sense-making behavior
both during query construction and when examining the search
results. Observations from the study provide the following de-
sign implications for how autocompletion can help with visual
analysis tasks, opening new opportunities for future research:

Autocompletion for varied visual analysis workflows: An
effect of task intervention during the first part of the study
was that there were fewer query reformulations as participants
utilized data previews to complete the tasks. The second part
of the study was more representative of real world practice,
and we did observe change in tactics in how people formu-
lated their queries. Participants used the data previews as a
scaffold to construct compound queries where filters were in-
crementally updated in the original query. P′2 said, “I find
it convenient to pile more filters in my question as the views
in the autocompletion get updated...saves me time when I’m
playing around.” During data exploration, participants would
remove or clear these filter subexpressions if the data previews
were not interesting anymore. We observed that for queries
where participants already knew the filter values they were
interested in, they would type the question quickly without
pausing to prompt for data previews. However, the text auto-
completion helped guide them while typing the tokens. These
observations indicate that autocompletion is used in different
ways based on the type of inquiry. Future studies should ex-
plore more deeply how autocompletion workflows can adapt
to a range of tasks and in the context of established visual
analytics systems [8, 4, 2].

Support for more complex previews: While the study par-
ticipants liked the overall idea and utility of the system, there
were limitations in supporting more complex analytics. For
example, P′3 commented, “I want to type ‘show me cases with

declining trends...’ and get a widget showing me the countries
where the cases were going down so I can decide where to
look.” For queries with both geospatial and temporal intents
such as “coronavirus cases in,” participants expected the map
and calendar widgets to be coordinated during interaction. Bal-
ancing interaction simplicity with more complex previews to
serve a greater gamut of analytical questions, is worth explor-
ing; there lies a sweet-spot for adding functionality into the
autocompletion itself vs. letting the user explore the results in
the visualization. The autocompletion behavior would need to
be performant to support real-time interaction.

Showing provenance of autocompletion behavior: While
most of the participants understood the purpose of the data
previews, they described usability issues around understanding
autocompletion behavior based on what was in context. When
one or more filters are in play, the data previews are dynami-
cally updated to reflect the current data domain. The behavior
was not always intuitive and either required clarification by
the experimenter or the participant would eventually figure
out the functionality after attempting to select a disabled item
in the widget. P′7 stated - “It would be good if I can see a
message appearing saying that I am already looking at April
and the data in the autocompletion is for that month.” While
the dynamic generation of autocompletion suggestions helps
provide in-situ guidance to the user, we need to explore ways
to show this feedback to set appropriate user expectations.

Personalization of autocompletion suggestions: The topic
of personalization of autocompletion behavior came up during
the exploratory study. P′3, P′4, and P′8 expressed that they
wanted the autocompletion to keep track of their past interac-
tion and update the default views. For example, P′4 said “I
am interested in the days and not months as these coronavirus
cases are changing so much. I don’t want to keep switching
from month to day view every time.” An interesting direction
is to monitor user interaction with Sneak Pique, record user
queries, and update autocompletion preferences.

CONCLUSION
Autocompletion is a useful interaction paradigm for informa-
tion sense-making. We implemented Sneak Pique as a design
probe to explore autocompletion in the context of visual analy-
sis and data discovery. The system uses a look-ahead parser to
resolve static and dynamic tokens for text and widget autocom-
pletion variants. User study results showed that data previews
are indeed useful and informed how such information could be
usefully presented in the interface. We implemented a subset
of preferred autocompletion variants in the final implementa-
tion of Sneak Pique. A preliminary evaluation of the system
validated our premise that autocompletion can serve as a data
scaffold to help users make relevance judgments during visual
analysis. We hope that insights learned from our work can
identify unique opportunities for striking a balance between
lightweight interactivity and rich analytical previews.

REFERENCES
[1] 2019. Watson Analytics,

https://www.ibm.com/watson-analytics. (2019).
https://www.ibm.com/watson-analytics

[2] 2020. ANTLR (ANother Tool for Language
Recognition)). https://www.antlr.org/. (2020).

[3] 2020. Microsoft Q & A. https://powerbi.microsoft.com/
en-us/documentation/powerbi-service-q-and-a/. (2020).

[4] 2020. Node.js®. https://nodejs.org/. (2020).

[5] 2020. Novel Coronavirus (COVID-19) Cases, provided
by Johns Hopkins University).
https://github.com/CSSEGISandData/COVID-19. (2020).

[6] 2020. Tableau’s Ask Data. https:
//www.tableau.com/products/new-features/ask-data.
(2020).

[7] 2020. ThoughtSpot. http://www.thoughtspot.com/.
(2020).

[8] Alfred V. Aho and Jeffrey D. Ullman. 1972. The Theory
of Parsing, Translation, and Compiling. Prentice-Hall,
Inc., USA.

[9] Holger Bast and Ingmar Weber. 2006. Type Less, Find
More: Fast Autocompletion Search with a Succinct
Index. In Proceedings of the 29th Annual International
ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR ’06). Association for
Computing Machinery, New York, NY, USA, 364–371.
DOI:http://dx.doi.org/10.1145/1148170.1148234

[10] Nicholas Belkin. 2014. Anomalous States Of
Knowledge As A Basis For Information Retrieval.
Canadian Journal of Information Science (11 2014),
133–143.

[11] Nicholas Belkin, R.N. ODDY, and H.M. BROOKS.
1982. ASK for information retrieval: Part I. Background
and theory. Journal of Documentation 38 (12 1982),
61–71. DOI:http://dx.doi.org/10.1108/eb026722

[12] Johan Bos. 2004. Computational Semantics in
Discourse: Underspecification, Resolution, and
Inference. J. of Logic, Lang. and Inf. 13, 2 (March 2004),
139–157. DOI:
http://dx.doi.org/10.1023/B:JLLI.0000024731.26883.86

[13] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer.
2011. D3: Data-Driven Documents. IEEE Transactions
on Visualization & Computer Graphics (Proc. InfoVis)
(2011). http://vis.stanford.edu/papers/d3

[14] Fei Cai, Ridho Reinanda, and Maarten De Rijke. 2016.
Diversifying Query Auto-Completion. ACM Trans. Inf.
Syst. 34, 4, Article Article 25 (June 2016), 33 pages.
DOI:http://dx.doi.org/10.1145/2910579

[15] Stuart K. Card, Jock D. Mackinlay, and Ben
Shneiderman. 1999. Using Vision to Think. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.
579–581 pages.

[16] Surajit Chaudhuri and Raghav Kaushik. 2009.
Extending autocompletion to tolerate errors. In
Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data. 707–718.

[17] Kevin Crowston. 2012. Amazon Mechanical Turk: A
Research Tool for Organizations and Information
Systems Scholars. In Shaping the Future of ICT
Research. Methods and Approaches, Anol Bhattacherjee
and Brian Fitzgerald (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 210–221.

[18] Giovanni Di Santo, Richard McCreadie, Craig
Macdonald, and Iadh Ounis. 2015. Comparing
Approaches for Query Autocompletion. In Proceedings
of the 38th International ACM SIGIR Conference on
Research and Development in Information Retrieval
(SIGIR ’15). Association for Computing Machinery,
New York, NY, USA, 775–778. DOI:
http://dx.doi.org/10.1145/2766462.2767829

[19] Huizhong Duan and Bo-June (Paul) Hsu. 2011. Online
Spelling Correction for Query Completion. WWW 2011.
https://www.microsoft.com/en-us/research/publication/

online-spelling-correction-for-query-completion/

[20] Ina Fourie. 2000. Online Retrieval: A Dialogue of
Theory and Practice (2nd ed.). Electronic Library, The
18 (12 2000), 448–469.

[21] Tong Gao, Mira Dontcheva, Eytan Adar, Zhicheng Liu,
and Karrie G. Karahalios. 2015. DataTone: Managing
Ambiguity in Natural Language Interfaces for Data
Visualization. In Proceedings of the 28th Annual ACM
Symposium on User Interface Software Technology
(UIST 2015). ACM, New York, NY, USA, 489–500.

[22] Gene Golovchinsky. 1999. Queries? Link? Is there a
difference? (08 1999). DOI:
http://dx.doi.org/10.1145/258549.258820

[23] Gene Golovchinsky, Abdigani Diriye, and Tony
Dunnigan. 2012. The Future is in the Past: Designing for
Exploratory Search. In Proceedings of the 4th
Information Interaction in Context Symposium (IIIX
’12). Association for Computing Machinery, New York,
NY, USA, 52–61. DOI:
http://dx.doi.org/10.1145/2362724.2362738

[24] Korinna Grabski and Tobias Scheffer. 2004. Sentence
Completion. In Proceedings of the 27th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR ’04).
Association for Computing Machinery, New York, NY,
USA, 433–439. DOI:
http://dx.doi.org/10.1145/1008992.1009066

[25] Enamul Hoque, Vidya Setlur, Melanie Tory, and Isaac
Dykeman. 2017. Applying pragmatics principles for
interaction with visual analytics. IEEE Transactions on
Visualization and Computer Graphics 24, 1 (2017),
309–318.

https://www.ibm.com/watson-analytics
https://www.antlr.org/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-q-and-a/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-q-and-a/
https://nodejs.org/
https://github.com/CSSEGISandData/COVID-19
https://www.tableau.com/products/new-features/ask-data
https://www.tableau.com/products/new-features/ask-data
http://www.thoughtspot.com/
http://dx.doi.org/10.1145/1148170.1148234
http://dx.doi.org/10.1108/eb026722
http://dx.doi.org/10.1023/B:JLLI.0000024731.26883.86
http://vis.stanford.edu/papers/d3
http://dx.doi.org/10.1145/2910579
http://dx.doi.org/10.1145/2766462.2767829
https://www.microsoft.com/en-us/research/publication/online-spelling-correction-for-query-completion/
https://www.microsoft.com/en-us/research/publication/online-spelling-correction-for-query-completion/
http://dx.doi.org/10.1145/258549.258820
http://dx.doi.org/10.1145/2362724.2362738
http://dx.doi.org/10.1145/1008992.1009066

[26] Philipp Hund, John Dowell, and Karsten Mueller. 2014.
Representation of time in digital calendars: An
argument for a unified, continuous and multi-granular
calendar view. International Journal of
Human-Computer Studies 72 (01 2014), 1–11. DOI:
http://dx.doi.org/10.1016/j.ijhcs.2013.09.005

[27] T. P. Kehler and R. C. Woods. 1980. ATN Grammar
Modeling in Applied Linguistics. In Proceedings of the
18th Annual Meeting on Association for Computational
Linguistics (ACL ’80). Association for Computational
Linguistics, USA, 123–126. DOI:
http://dx.doi.org/10.3115/981436.981472

[28] Carol C. Kuhlthau. 1991. Inside the Search Process:
Information Seeking from the User’s Perspective.
Journal of the American Society for Information Science
42, 5 (1991), 361–371.

[29] Abhinav Kumar, Jillian Aurisano, Barbara Di Eugenio,
Andrew Johnson, Alberto Gonzalez, and Jason Leigh.
2016. Towards a Dialogue System that Supports Rich
Visualizations of Data. In 17th Annual Meeting of the
Special Interest Group on Discourse and Dialogue.
304–309.

[30] Guoliang Li, Shengyue Ji, Chen Li, and Jianhua Feng.
2009. Efficient Type-Ahead Search on Relational Data:
A TASTIER Approach. In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of
Data (SIGMOD ’09). Association for Computing
Machinery, New York, NY, USA, 695–706. DOI:
http://dx.doi.org/10.1145/1559845.1559918

[31] Guoliang Li, Shengyue Ji, Chen Li, and Jianhua Feng.
2011. Efficient Fuzzy Full-Text Type-Ahead Search. The
VLDB Journal 20, 4 (Aug. 2011), 617–640. DOI:
http://dx.doi.org/10.1007/s00778-011-0218-x

[32] Guoliang Li, Jiannan Wang, Chen Li, and Jianhua Feng.
2012. Supporting Efficient Top-k Queries in Type-Ahead
Search. In Proceedings of the 35th International ACM
SIGIR Conference on Research and Development in
Information Retrieval (SIGIR ’12). Association for
Computing Machinery, New York, NY, USA, 355–364.
DOI:http://dx.doi.org/10.1145/2348283.2348333

[33] Jock Mackinlay, Pat Hanrahan, and Chris Stolte. 2007.
Show Me: Automatic Presentation for Visual Analysis.
IEEE transactions on visualization and computer
graphics 13 (11 2007), 1137–44. DOI:
http://dx.doi.org/10.1109/TVCG.2007.70594

[34] WILLIAM MANN and Sandra Thompson. 1988.
Rhetorical Structure Theory: Toward a functional theory
of text organization. Text 8 (01 1988), 243–281. DOI:
http://dx.doi.org/10.1515/text.1.1988.8.3.243

[35] Gary Marchionini. 2006. Exploratory Search: From
Finding to Understanding. Commun. ACM 49, 4 (April
2006), 41–46. DOI:
http://dx.doi.org/10.1145/1121949.1121979

[36] Robert C. Miller, Victoria H. Chou, Michael Bernstein,
Greg Little, Max Van Kleek, David Karger, and mc
schraefel. 2008. Inky: A Sloppy Command Line for the
Web with Rich Visual Feedback. In Proceedings of the
21st Annual ACM Symposium on User Interface
Software and Technology (UIST ’08). Association for
Computing Machinery, New York, NY, USA, 131–140.
DOI:http://dx.doi.org/10.1145/1449715.1449737

[37] Peter Morville and Jeffery Callender. 2010. Search
Patterns: Design for Discovery. O’Reilly.
https://www.safaribooksonline.com/library/view/

search-patterns/9781449380205/

[38] Arnab Nandi and HV Jagadish. 2007a. Assisted
querying using instant-response interfaces. In
Proceedings of the 2007 ACM SIGMOD international
conference on Management of data. 1156–1158.

[39] Arnab Nandi and HV Jagadish. 2007b. Effective phrase
prediction. In Proceedings of the 33rd international
conference on Very large data bases. 219–230.

[40] Terence Parr, Sam Harwell, and Kathleen Fisher. 2014.
Adaptive LL(*) Parsing: The Power of Dynamic
Analysis. OOPSLA 2014 49 (10 2014), 579–598. DOI:
http://dx.doi.org/10.1145/2714064.2660202

[41] Pernilla Qvarfordt, Gene Golovchinsky, Tony Dunnigan,
and Elena Agapie. 2013. Looking Ahead: Query
Preview in Exploratory Search. In Proceedings of the
36th International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR ’13).
Association for Computing Machinery, New York, NY,
USA, 243–252. DOI:
http://dx.doi.org/10.1145/2484028.2484084

[42] Mark Sanderson and C. J. van Rijsbergen. 1991. NRT:
News Retrieval Tool. Electron. Publ. Origin. Dissem.
Des. 4, 4 (Dec. 1991), 205–217.

[43] Vidya Setlur, Sarah E. Battersby, Melanie Tory, Rich
Gossweiler, and Angel X. Chang. 2016. Eviza: A
Natural Language Interface for Visual Analysis. In
Proceedings of the 29th Annual Symposium on User
Interface Software and Technology (UIST 2016). ACM,
New York, NY, USA, 365–377.

[44] Vidya Setlur, Melanie Tory, and Alex Djalali. 2019.
Inferencing Underspecified Natural Language
Utterances in Visual Analysis. In Proceedings of the
24th International Conference on Intelligent User
Interfaces (IUI ’19). Association for Computing
Machinery, New York, NY, USA, 40–51. DOI:
http://dx.doi.org/10.1145/3301275.3302270

[45] Milad Shokouhi. 2013. Learning to Personalize Query
Auto-Completion. In Proceedings of the ACM
International Conference on Research and Development
in Information Retrieval (SIGIR) (proceedings of the
acm international conference on research and
development in information retrieval (sigir) ed.). ACM.
https://www.microsoft.com/en-us/research/publication/

learning-to-personalize-query-auto-completion/

http://dx.doi.org/10.1016/j.ijhcs.2013.09.005
http://dx.doi.org/10.3115/981436.981472
http://dx.doi.org/10.1145/1559845.1559918
http://dx.doi.org/10.1007/s00778-011-0218-x
http://dx.doi.org/10.1145/2348283.2348333
http://dx.doi.org/10.1109/TVCG.2007.70594
http://dx.doi.org/10.1515/text.1.1988.8.3.243
http://dx.doi.org/10.1145/1121949.1121979
http://dx.doi.org/10.1145/1449715.1449737
https://www.safaribooksonline.com/library/view/search-patterns/9781449380205/
https://www.safaribooksonline.com/library/view/search-patterns/9781449380205/
http://dx.doi.org/10.1145/2714064.2660202
http://dx.doi.org/10.1145/2484028.2484084
http://dx.doi.org/10.1145/3301275.3302270
https://www.microsoft.com/en-us/research/publication/learning-to-personalize-query-auto-completion/
https://www.microsoft.com/en-us/research/publication/learning-to-personalize-query-auto-completion/

[46] Milad Shokouhi and Kira Radinsky. 2012.
Time-Sensitive Query Auto-Completion. In Proceedings
of the 35th International ACM SIGIR Conference on
Research and Development in Information Retrieval
(SIGIR ’12). Association for Computing Machinery,
New York, NY, USA, 601–610. DOI:
http://dx.doi.org/10.1145/2348283.2348364

[47] Arjun Srinivasan and John Stasko. 2018. Orko:
Facilitating multimodal interaction for visual
exploration and analysis of networks. IEEE transactions
on visualization and computer graphics 24, 1 (2018),
511–521.

[48] Chris Stolte, Diane Tang, and Pat Hanrahan. 2002.
Polaris: A System for Query, Analysis, and
Visualization of Multidimensional Relational Databases.
IEEE Transactions on Visualization and Computer
Graphics 8, 1 (Jan. 2002), 52–65. DOI:
http://dx.doi.org/10.1109/2945.981851

[49] U.S. Geological Survey. 2020. Earthquake Facts and
Statistics. https://www.usgs.gov/natural-hazards/
earthquake-hazards/earthquakes. (2020).

[50] Robert S. Taylor. 1968. Question-Negotiation and
Information Seeking in Libraries. College & Research
Libraries 29, 3 (1968), 178–194. DOI:
http://dx.doi.org/10.5860/crl_29_03_178

[51] Jaime Teevan. 2008. How People Recall, Recognize, and
Reuse Search Results. ACM Trans. Inf. Syst. 26, 4,
Article Article 19 (Oct. 2008), 27 pages. DOI:
http://dx.doi.org/10.1145/1402256.1402258

[52] Michael Twidale and David Nichols. 1998. Designing
Interfaces to Support Collaboration in Information
Retrieval. Interacting with Computers 10 (05 1998),
177–193. DOI:
http://dx.doi.org/10.1016/S0953-5438(97)00022-2

[53] Bojan Šavrič, Tom Patterson, and Bernhard Jenny. 2019.
The Equal Earth map projection. International Journal
of Geographical Information Science 33, 3 (2019),
454–465. DOI:
http://dx.doi.org/10.1080/13658816.2018.1504949

[54] Stewart Whiting and Joemon M. Jose. 2014a. Recent
and Robust Query Auto-Completion. In Proceedings of
the 23rd International Conference on World Wide Web
(WWW ’14). Association for Computing Machinery,
New York, NY, USA, 971–982. DOI:
http://dx.doi.org/10.1145/2566486.2568009

[55] Stewart Whiting and Joemon M. Jose. 2014b. Recent
and Robust Query Auto-Completion. In Proceedings of
the 23rd International Conference on World Wide Web
(WWW ’14). Association for Computing Machinery,
New York, NY, USA, 971–982. DOI:
http://dx.doi.org/10.1145/2566486.2568009

[56] Wesley Willett, Jeffrey Heer, and Maneesh Agrawala.
2007. Scented widgets: Improving navigation cues with
embedded visualizations. IEEE Transactions on
Visualization and Computer Graphics 13, 6 (2007),
1129–1136.

[57] Chuan Xiao, Jianbin Qin, Wei Wang, Yoshiharu
Ishikawa, Koji Tsuda, and Kunihiko Sadakane. 2013.
Efficient Error-Tolerant Query Autocompletion. Proc.
VLDB Endow. 6, 6 (April 2013), 373–384. DOI:
http://dx.doi.org/10.14778/2536336.2536339

[58] Peipei Yi, Byron Choi, Sourav S Bhowmick, and
Jianliang Xu. 2017. AutoG: a visual query
autocompletion framework for graph databases. The
VLDB Journal 26, 3 (2017), 347–372.

http://dx.doi.org/10.1145/2348283.2348364
http://dx.doi.org/10.1109/2945.981851
https://www.usgs.gov/natural-hazards/earthquake-hazards/earthquakes
https://www.usgs.gov/natural-hazards/earthquake-hazards/earthquakes
http://dx.doi.org/10.5860/crl_29_03_178
http://dx.doi.org/10.1145/1402256.1402258
http://dx.doi.org/10.1016/S0953-5438(97)00022-2
http://dx.doi.org/10.1080/13658816.2018.1504949
http://dx.doi.org/10.1145/2566486.2568009
http://dx.doi.org/10.1145/2566486.2568009
http://dx.doi.org/10.14778/2536336.2536339

	Introduction
	Contributions

	Related Work
	Autocompletion to support syntactic query formulation
	Autocompletion to support information recall and preview
	Autocompletion to support visual analysis

	Sneak Pique System
	Autocompletion detection
	Autocompletion generation
	Design patterns for autocompletion
	Determine autocompletion type
	Compute data preview

	Evaluating Autocompletion Variants
	Experiment Design
	Experiment 1: Evaluating the utility of data preview
	Results: Data previews were preferred without null values

	Experiment 2: Examining sort order preferences
	Results: Semantic grouping with labels was most preferred

	Experiment 3: Evaluating the display of hierarchical data
	Results: Text autocompletion was preferred for hierarchies

	Autocompletion variants for the final implementation

	System Evaluation
	Method
	Participants
	Tasks
	Procedure and Apparatus
	Analysis Approach

	Results
	Part 1 - Target criteria tasks
	Part 2 - Open-ended tasks

	Discussion and Future Work
	Conclusion
	References

