
Finding Solutions to Generative Adversarial Privacy

Dae Hyun Kim∗
dhkim16@stanford.edu

Taeyoung Kong†
kongty@stanford.edu

Seungbin Jeong†
sjeong91@stanford.edu

Abstract

We present heuristics for solving the maximin problem
induced by the generative adversarial privacy setting for
linear and convolutional neural network (CNN) adver-
saries. In the linear adversary setting, we present a
greedy algorithm for approximating the optimal solution
for the privatizer, which performs better as the number
of instances increases. We also provide an analysis of the
algorithm to show that it not only removes the features
most correlated with the private label first, but also pre-
serves the prediction accuracy of public labels that are
sufficiently independent of the features that are relevant
to the private label. In the CNN adversary setting, we
present a method of hiding selected information from
the adversary while preserving the others through alter-
nately optimizing the goals of the privatizer and the ad-
versary using neural network backpropagation. We ex-
perimentally show that our method succeeds on a fixed
adversary.

1 Introduction

Assume that an entity, whom we call the privatizer holds
some data it wishes to publish to the public, but that the
data includes some sensitive information, such as gender
or race, that the entity wants to hide from the public.
We will assume that there exists another entity, whom we
call the adversary, whose goal is to recover the sensitive
information from the data published by the privatizer,
and publicly available data that relates the features of
the privatizer’s data with the sensitive labels.

If the privatizer naively removes the sensitive labels
and publishes the rest of the data as-is, the adversary can
accurately recover the sensitive labels using various ma-
chine learning models with the publicly available data.
Thus, the privatizer needs to encrypt its data using a
privatization function before it publishes it to the pub-
lic. We will assume the worst case for the privatizer, in
which the privatization function is known to the adver-
sary, perhaps through publications or information leak-
age. The natural methodology that the adversary would
use is to first simulate the privatization function on the
publicly available data to obtain a relationship between
the privatized data and the sensitive information. Then
he would use this relationship to predict the sensitive

∗Department of Computer Science, Stanford University
†Department of Electrical Engineering, Stanford University

labels from the privatized data published by the priva-
tizer. The privatizer’s goal is to hinder such attempt by
the adversary.

This problem is a zero-sum game, in which the adver-
sary attempts to minimize his loss on predicting the sen-
sitive labels, while the privatizer attempts to maximize
this value. From the privatizer’s perspective, finding the
optimum requires solving a maximin problem:

argmax
P

min
f∈Hadv

L(f(P (X)), y),

where P stands for the privatizer’s function and L stands
for the loss function. In addition, the privatizer wants
to release useful data to the public, which we will model
by restricting the amount of change in the data:

‖X − P (X)‖22 ≤ D,

for some constant D. In this paper, we investigate this
problem when Hadv, the hypothesis class of the adver-
sary, is either linear or convolutional neural network
(CNN).

2 Related Work

2.1 Minimax Optimization
Zero-sum games are games in which the two players’
utilities sum to zero, which is commonly seen in real
life. The two players in a zero-sum game are subject
to solving a minimax game, in which each of the play-
ers attempt to minimize the maximum utility gained by
the opponent. Due to its omnipresence, much work has
been done to accurately and efficiently solve the minimax
games under variant restrictions [1, 2].

The setup that we are working with is a zero-sum game
between the privatizer and the adversary, and this natu-
rally gives rise to a maximin game, which is just a nega-
tion of a minimax game.

2.2 Generative Adversarial Networks
Recently, generative adversarial network (GAN) [3, 4]
was proposed to generate data to simulate real data. The
GAN solved the minimax problem between the genera-
tor and the discriminator to train a good generative net-
work. The idea of training a generator with another net-
work inspired us on how to train the privatizer network.
This generator tries to deceive the adversary, while the
adversary tries to avoid being fooled by it.

1

ar
X

iv
:1

81
0.

02
06

9v
1 

 [
cs

.L
G

] 
 4

 O
ct

 2
01

8



2.3 Generative Adversarial Privacy
Recent works [5, 6] have introduced the idea of generative
adversarial privacy (GAP) and showed that it is possible
to add noise that selectively disturbs algorithms that can
learn the private labels, while preserving the utility of
algorithms that can learn public labels. There is also
some promising results in the case in which the models
used by the adversary and the ally are both linear [7].

Our work differs from these previous works in that we
aim to preserve the overall data, instead of choosing a
label to preserve the accuracy for.

3 Methods

3.1 Linear Adversary Case
We will solve the privatizer’s problem with lossy com-
pression using a compression matrix A. In this case, the
privatizer’s problem simplifies to:

Minimize
∥∥∥yT (

XAA+
) (
XAA+

)+∥∥∥2
2
,

subject to
∥∥X −XAA+

∥∥2
Frob

≤ D

where the compression matrix A is the variable. This
problem is difficult because the variable is encapsulated
in a pseudoinverse that is difficult to simplify.1

We therefore look at a smaller subset of the problem
by restricting the data compression with respect to the
features. Then, the problem reduces to partitioning the
set of features into two sets, R, the set of features that are
removed by the compression, and S, the set of features
that are preserved by the compression. The optimum of
this subproblem can be found by solving

Maximize
∥∥y −Xi∈RX

+
i∈R

∥∥
2
,

subject to ‖Xi∈R‖22 ≤ D

where the set of excluded features, R, is the variable.2
Solving this problem by brute force results in exponen-

tial time complexity. Therefore, we propose an approxi-
mation algorithm for computing the optimum based on
the ideas of the greedy algorithm. In each step of the
greedy algorithm (Algorithm 1), we select the element
that maximizes the utility, ‖y −Xi∈R∪{e}X

+
i∈R∪{e}‖2,

per unit cost,
∥∥XR∪{e}

∥∥2
2
.

3.2 CNN Adversary Case
In the CNN adversary case, we assume that the adver-
sary’s network comprises of convolutional layers, activa-
tion layers (ReLu), pooling layers, fully connected layers,
and a loss layer (softmax cross entropy loss) as exempli-
fied by Figure 1a.

1One of the steps leading to the convexity results in the mile-
stone had an error.

2If y = Xθ, the target function reduces further to∥∥∥(Xi∈R −Xi∈SX
+
i∈SXi∈R

)
θi∈R

∥∥∥2
2
.

Algorithm 1 Greedy Algorithm

1: procedure Greedy-Approx(D)
2: R← φ
3: do
4: enext ← Find-Next (R,D)
5: R← R ∪ {enext}
6: while enext 6= null
7: return R
8: end procedure
1: procedure Find-Next(R, D)
2: (u/c)max ← −∞
3: enext ← null
4: for e ∈ {1, · · · , n} \R do
5: c←

∥∥XR∪{e}
∥∥2
2

6: if c > D then
7: continue
8: end if
9: u← ‖y −Xi∈R∪{e}X

+
i∈R∪{e}‖2

10: if v/c > (u/c)max then
11: (u/c)max ← u/c
12: enext = e
13: end if
14: end for
15: return enext
16: end procedure

The privatizer uses a neural network (Figure 1b) that
consists of an (1) encoder, which not only reduces the
features by convolutional layers, but also tries to capture
the high level features that the adversary would capture,
a (2) decoder, which uses deconvolutional layers to map
the captured features into the pixel space. The resulting
output of the privatizer’s network is the noise, ∆X that
he/she adds to the original image X, to obtain a priva-
tized image, X + ∆X. The restriction in the amount of
change in the data, in this case, becomes:

‖∆X‖22 ≤ D.

We also added a constraint that we want to preserve the
prediction accuracy as much as possible for a selected set
of labels with a pre-trained model on the original data,
which we call protected labels. 3

In determining the model for the privatization func-
tion, the privatizer solves the maximin problem men-
tioned in Section 1. The privatizer’s method for solving
this maximin problem by (Algorithm 2): (1) initializ-
ing the privatizer’s internal model for the adversary’s
parameters, θadv, and the privatizer’s own parameters,
θpriv, randomly, (2) fixing θpriv and solves for the opti-
mal θadv against the loss function of the private labels
from the adversary’s perspective using backpropagation,
(3) fixing θadv and solves for the optimal θpriv against the

3We are able to preserve prediction accuracies of labels that are
not highly correlated with the private label without this constraint,
but with this constraint, we can preserve prediction accuracies on
even highly correlated labels such as gender and decoration in 11k
Hands.

2



(a) Adversary neural network structure

(b) Privatizer neural network structure

Figure 1: Adversary and privatizer network structures

Algorithm 2 Maximin Algorithm for CNN Adversary

1: procedure Solve-Maximin(X, D)
2: θpro ← argmin

θ
Lpro(X; θ)

3: θadv ∼ Xavier
4: θpriv ∼ Xavier
5: while ∆θadv > ε or ∆θpriv > ε do
6: θadv ← argmin

θ
Lpriv (X + ∆X (X, θpriv, D) ; θ)

7: θpriv ← argmax
θ

Lpriv (X + ∆X (X, θ,D) ; θadv)

8: θpriv ← argmin
θ
Lpro (X + ∆X (X, θ,D) ; θpro)

9: end while
10: end procedure

dataset instances (m) features (n) labels (N)
Hadv: linear

Beijing PM 2.5 [8] 41757 7 2
UCI Wine Quality [9] 4898 7 5

Hadv: CNN
GENKI [10] 4000 200× 200× 1 4

11k Hands [11] 5538 200× 200× 3 4

Figure 2: Summary of datasets

loss function of the private labels from the privatizer’s
perspective using backpropagation, (4) finding the opti-
mal θpriv against the loss function of the protected labels,
and (5) repeating these steps until convergence.

4 Dataset and Features

For the linear adversary case, we use generated data
of various sizes to confirm that the greedy approxima-
tion indeed approaches the true optimum. We generated
the input data randomly using a uniform distribution

unif (0, 1), and varied the number of features from 4 to
7 and the number of instances from 10 to 1000.

We use Beijing PM 2.5 dataset [8] and UCIWine Qual-
ity dataset [9] (Figure 2) to observe the properties of
the optimum that we obtain. Of the properties included
in the Beijing PM 2.5 dataset, we utilize the proper-
ties year, month, day, hour, temperature, pressure, and
cumulated wind speed as features, and PM2.5 concen-
tration and dew point as labels. For this dataset, we
removed any instance that included missing features. In
addition, of the properties included in the UCI Wine
Quality dataset, we utilize the properties fixed acidity,
volatile acidity, citric acid, residual sugar, chlorides, free
sulfur dioxide, and total sulfur dioxide as features, and
density, pH, sulphates, alcohol, and quality as labels.

In the investigation of CNN adversaries, we used two
different datasets called GENKI [10] and 11k Hands [11]
(Figure 2). GENKI is a dataset of 4000 human faces
that is labeled with head pose and smile content. We
replaced images that included multiple people or that
were too low resolution for even humans to understand
the image, and labeled gender for each of the images.
We also normalized the sizes to 200× 200 and converted
the images to grayscale.

The main dataset is 11k Hands, a dataset of 11076
hands labeled with the subject ID, gender, age, skin color,
left/right, which we will call hand side, dorsal/palmar,
accessories, nail polish, and irregularities. We only used
the dorsal side (5538) images and combined the labels
accessories and nail polish by an ‘or’ operation to obtain
a new label, decoration. Then, we reduced the size of
the images to 200 × 200. We also augmented the train-
ing data by flipping the images, changing to grayscale,
adding noise, and shifting the images to help the network
capture essential features.

5 Results and Discussion

5.1 Linear Adversary Case

Figure 4 shows the relationship between the number of
instances and the proportion of runs in which the greedy
approximation achieved the optimum for varying num-
ber of features, obtained from the randomly generated
toy data. The results indicate that the greedy approxi-
mation achieves the optimum more often as the number
of instances increases. Furthermore, the results seem to
indicate that for greater number of features, we need
more instances in order to accomplish the same propor-
tion.

In the experiment with the Beijing PM 2.5 dataset,
we set the dew point as the private label and PM 2.5
as the public label. Figure 3a shows the change in the
L2 loss for these two labels. The loss of the dew point
increased from 0.044 to 0.153, while the loss of PM 2.5
increased only from 0.031 to 0.033. The features removed
by greedy algorithm were in the order of: temperature,
pressure, and day (of month). These features are rele-

3



(a) dew point (private) vs PM 2.5 (b) alcohol % (private) vs wine quality (c) alcohol % (private) vs pH

(d) gender (private) vs smile content (e) accuracies of labels for 11k Hands

Figure 3: Effect of privatization: (a) Beijing PM 2.5, (b, c) Wine (d) GENKI, and (e) 11k Hands

Figure 4: Ratio of optimum achieved by greedy

vant to both labels, but whereas the dew point is directly
related to the temperature and the pressure, PM 2.5 is
only indirectly related to these features.

We set alcohol content as the private label and the
rest of the labels as public labels in the experiment with
the UCI Wine Quality. Figure 3b shows the change in
the L2 loss for the private label, alcohol content, and a
public label, wine quality. The loss of the alcohol content
increased from 0.096 to 0.108, while the loss of the wine
quality increased only from 0.081 to 0.082. The features
removed by the greedy algorithm were in the order of:
total SO2, fixed acidity, and citric acid. These features
are highly relevant to the alcohol content.4

4SO2 is a byproduct of fermentation, the cooler the origin of
the wine, the higher the acidity and the lower the alcohol content.

On the other hand, if we compare the loss of the pri-
vate label, alcohol content, against that of another public
label, pH, we experience a relatively high increase in the
loss of the public label (Figure 3c). Specifically, the loss
of the pH increased from 0.055 to 0.068, which is com-
parable to the increase in the loss of the alcohol content.
This is because two of the removed features, fixed acid-
ity and citric acid, are highly correlated with both the
pH and the alcohol content. Here, we conclude that it
is more difficult to preserve accuracy of the public labels
that are dependent on the same features as the private
label.

5.2 CNN Adversary Case
We used Google TensorFlow [12] for handling neural net-
works.

For the GENKI dataset, we used two convolutional
layers of sixteen 7 × 7 filters, each followed by a max-
pool layers, and a fully connected layer of size 128 for
the adversary’s network. We used the same structure
as the adversary’s network for the privatizer’s encoder,
and used a fully connected layer of size 40000 for the
privatizer’s decoder.

We set gender as the private label, and the smile con-
tent as the public label in this dataset. The original test
accuracy was 73% for the gender and 70% for the smile
content. With the privatized images, the accuracy of the
gender decreased to 53%, while that of the smile content
increased to 77% (Figure 3d).

For the 11k Hands dataset, we used three convolu-
tional layers with two 3× 3 filters, four 4× 4 filters and
eight 3 × 3 filters respectively, each followed by a max-
pool layer, and finally a fully connected layer of size 32
for the adversary’s network. The pre-trained neural net-

4



Figure 5: Original and privatized images

work for the protected labels has three convolutional lay-
ers with four 3× 3 filters, eight 4× 4 filters and sixteen
3 × 3 filters respectively, each followed by a max-pool
layer, and finally a fully connected layer of size 64. The
encoder of the privatizer has the same structure as that
of the protected labels, and decoder of the privatizer is
symmetric to the encoder (Figure 1b).

We set gender as the private label, decoration as the
protected label, and the rest as public labels. The ac-
curacy achieved with the original data is 91.6% (gen-
der), 89.5% (skin), 97.1% (hand side), and 97.2% (dec-
oration). With the privatized images, the accuracy for
gender dropped to 58.7%, while the accuracies for skin,
hand side, and decoration changed to 89.5%, 97.0%, and
97.3%, respectively (Figure 3e). In sum, the accuracy for
the private label dropped, whereas the accuracies for the
other labels did not change significantly. As we desired,
the privatized images did not undergo notable distortion
(Figure 5).

Theoretically the convergence occurs when the priva-
tizer can cover all the private label-related features to
a certain level. However, due to the limited computing
resources and limited time, we were not able to attempt
a thorough set of parameters with larger networks, and
did not observe the convergence.

6 Conclusion

We present an efficient method of constructing a priva-
tizer when the adversary is limited to linear models using
a greedy approximation, which improves with the num-
ber of instances increasing. Moreover, we found that the
greedy algorithm removes features most correlated with
the private label first, and that the algorithm preserves
the predictability of public labels as long as they are suf-
ficiently independent of the features that are relevant to
the private label.

We also present a method for building a privatizer
against a CNN adversary. We were able to selectively
lower the private label’s accuracy while preserving other
labels’ accuracies against a fixed CNN adversary. How-
ever, we lacked computational power for testing suffi-
ciently many hyperparameters to achieve convergence.

7 Future Work

In the linear adversary case, theoretically bounding the
performance of the greedy algorithm and finding how

the relationship between features affects the optimum
would solidify our findings. Also, we only compressed the
data with respect to the standard basis, but because any
orthonormal basis can be transformed into a standard
basis using an invertible matrix multiplication, we can
easily generalize our results to any other orthonormal
basis. The natural next step is to find which orthonormal
basis induces the best optimum.

Regarding the CNN adversary case, we will continue
aiming for convergence of the algorithm by searching for
hyperparameters in a larger space with greater compu-
tational power. In this case, the loss function should
be calculated for all the history of the evolving adver-
sary so that all the private attribute-related features are
covered. Afterwards, whether our method generalizes
to more complicated neural networks remains a future
work.

Acknowledgement

We thank Peter Kairouz (kairouzp@stanford.edu), a
postdoctorate scholar in the Department of Civil and
Environmental Engineering, Stanford University, for his
mentorship in this work.

Contributions

Dae Hyun Kim has taken the lead on the linear adver-
sary case and helped out with the CNN adversary case
through general advice and help with finding parameters.
Taeyoung Kong has helped out with the linear adversary
case through confirmation and scribing, and helped out
with the CNN adversary case through general advice and
help with finding parameters. Seungbin Jeong has taken
the lead on the CNN adversary case and helped out with
the linear adversary case through general advice.

References

[1] C. Charalambous and J. W. Bandler, “Nonlinear
programming using minimax techniques,” Journal
of Optimization Theory and Applications Volume
13, 1974.

[2] C. Charalambous and A. Conn, “An efficient
method to solve the minimax problem directly,”
SIAM Journal on Numerical Analysis, 1978.

[3] I. J. Goodfellow, J. Shlens, and C. Szegedy,
“Explaining and harnessing adversarial examples,”
arXiv preprint arXiv:1412.6572, 2014.

[4] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna,
D. Erhan, I. Goodfellow, and R. Fergus, “Intrigu-
ing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

5



[5] C. Huang, P. Kairouz, X. Chen, L. Sankar, and
R. Rajagopal, “Context-aware generative adversar-
ial privacy,” Entropy, Submitted.

[6] J. Hamm, “Minimax filter: Learning to preserve
privacy from inference attacks,” arXiv preprint
arXiv:1610.03577, 2016.

[7] K. Xu, T. Cao, S. Shah, C. Maung, and
H. Schweitzer, “Cleaning the null space: A privacy
mechanism for predictors,” in Thirty-First AAAI
Conference on Artificial Intelligence (AAAI-17),
pp. 2789–2795, AAAI, 2017.

[8] X. Liang, T. Zou, B. Guo, S. Li, H. Zhang, S. Zhang,
H. Huang, and S. X. Chen, “Assessing beijing’s
pm2.5 pollution: severity, weather impact, apec and
winter heating,” in The Royal Society A, pp. 471–
471, RSPA, 2015.

[9] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, Reis,
and J. , “Modeling wine preferences by data mining
from physicochemical properties,” Decision Support
Systems, Elsevier, 2009.

[10] http://mplab.ucsd.edu, “The MPLab GENKI
Database, GENKI-4K Subset.”

[11] M. Afifi, “Gender recognition and biometric identifi-
cation using a large dataset of hand images,” arXiv
preprint arXiv:1711.04322, 2017.

[12] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Is-
ard, M. Kudlur, J. Levenberg, R. Monga, S. Moore,
D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, and X. Zheng, “Ten-
sorflow: A system for large-scale machine learning,”
in 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pp. 265–
283, 2016.

6

http://mplab.ucsd.edu

	1 Introduction
	2 Related Work
	2.1 Minimax Optimization
	2.2 Generative Adversarial Networks
	2.3 Generative Adversarial Privacy

	3 Methods
	3.1 Linear Adversary Case
	3.2 CNN Adversary Case

	4 Dataset and Features
	5 Results and Discussion
	5.1 Linear Adversary Case
	5.2 CNN Adversary Case

	6 Conclusion
	7 Future Work

