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Abstract

Visualizations and text are commonly used together in various applications, ranging from commu-

nicative documents to interactive tools for analyzing and exploring data. However, much about the

relationship between visualizations and text remains unexplored. This thesis specifically focuses on

three problems related to communicating the connections between the two representations and ways

to surface these connections to address the problems.

We begin by asking how readers integrate information between visualizations and text when

the two representations emphasize different aspects of the underlying data. Through a user study,

we find that readers can miss information presented in the text because they rely more on the

visualizations for their takeaways. Based on the study results, we provide guidelines for authoring

effective visualization-text pairs that doubly emphasize intended aspects of the underlying data.

Identifying references between visualizations and text, which are often also spatially separated,

is a mentally taxing process. The cognitive burden disrupts the flow of reading as readers traverse

back and forth between visualizations and text in an attempt to mentally link their contents. We

present an interactive document reader that extends existing PDF documents based on automatically

extracted references between visualizations and text. Specifically, it facilitates document reading by

highlighting the references and dynamically positioning visualizations close to relevant text. Our

user study shows that the interface helps readers integrate visualizations into their flow of reading

by helping them identify references more quickly and more accurately.

When using a natural language interface for visualizations, users are often not informed about

how the system operated on a visualization based on its interpretation of a text query. This lack of

transparency leads users to question the system because they cannot easily verify the correctness of

its outputs. We present a chart question answering system that generates visual explanations that

clarifies how it used an input question and a visualization to obtain an answer. A user study reveals

that our visual explanations significantly improve transparency and achieve levels of trust close to

human-generated explanations.
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Chapter 1

Introduction

Figure 1.1: Chart, caption and body text from a World Development Report from the World
Bank [12]. The author uses the univariate line chart about global value chain share of global
trade (lower left) with a caption (upper left) and sentences in the body text (right). The caption
not only points to the rise up to 2008 and the flattening afterwards, but also brings in the external
information that the global financial crisis happened in 2008. The first sentence of the body text
(green) again mentions the rise and the flattening for further emphasis of the features. The next
sentence (blue) further points out that the value still lingers around 50% to bring this fact into
attention. The last sentence (yellow) gives an analysis of potential causes of the rise up to 2008.

As the adage, “A picture is worth a thousand words” states, visualizations are efficient carriers of

information. They not only are compact representations of data, but also reveal and draw attention

to the structures and patterns that lie within the data [164] and improve the memorability of the

presented information [20, 126]. These properties make visualizations ideal for both communicating

information and exploring data.

Although visualizations are powerful tools on their own, authors often pair them with text such

1
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as annotations, captions, or sentences in the body text. The text serves a variety of important roles.

For example, it guides readers about how to parse the information, emphasizes certain features

of the data, incorporates the presented information into a narrative, presents external information

for context and provides citation of the data sources. Figure 1.1 shows a typical example of a

visualization used with text and illustrates how they work together. Prior research shows that text

accompanying visualizations is effective in guiding people’s attention towards certain portions of the

visualizations [57, 122] and that it can improve both recall and comprehension of certain aspects of

the underlying data [21, 58, 66, 93, 119].

However, connecting information in text and visualizations to understand the key messages is

often difficult and results in not getting the full message across. In fact, studies indicate that read-

ers have difficulty integrating information between text and visualizations [110, 122, 124]. This

often leads readers to focus on either the visualization or the caption without connecting the infor-

mation provided in the two representations, resulting in a partial comprehension of the presented

information [122].

One major barrier to connecting information between the two representations is the cognitive

effort required to see how their contents are related. Text and visualizations are often positioned

distant from each other, occasionally ending up on different pages [16, 163, 164]. To fully understand

the presented information, the reader has to look back and forth between them and split attention,

which leads to an increased cognitive load [10, 49, 157]. The split attention problem is further aggra-

vated by the difficulty of figuring out the references between the text and visualizations, especially

when the visualization is complex or if the text refers to multiple features in the visualization. In

Figure 1.1, as readers read the first sentence (green), they would first have to establish its relevance

to the chart. They then identify the features the sentence refers to: “grew significantly in the 1990s

and early 2000s” and “stagnated or even declined in the last 10 years”. Next, they need to mentally

parse the line and match each of the individual features to portions of the line to identify the refer-

ences between the sentence and the chart. Finally, the readers can look back and forth between the

chart and the sentence to find out what they each say about the features.

Another barrier to connecting information between text and visualizations is the occasional

mismatch in the emphasis of information. For instance, the second sentence (blue) of Figure 1.1

refers to the fact that the value at the right end of the graph is at about 50%, which is not one of the

most visually prominent features in the visualization. Given the conflicting emphasis of the text and

the chart, the readers favor either the chart’s visually prominent features or the text as presenting

the key messages. This can lead the readers to potentially miss certain aspects of the information.

More recently, text has become an important modality for data exploration and has been incor-

porated into multiple commercial systems [7, 56, 72, 111, 159, 161, 177]. These systems take an input

text query and create or modify visualizations or answer questions about the underlying data. The

text input allows users to easily express their intents even without much experience [59, 68, 144].
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Nonetheless, existing systems do not show a connection between the input text query and the op-

erations performed on the visualization. Yet, for users to trust and rely on the results generated by

these systems, the systems must transparently explain how they combined the input queries and the

visualizations to arrive at the results [144].

In sum, seeing how visualizations and text are related is difficult and leads to miscommunication

and lack of trust. This thesis explores how tools and design principles clarifying connections between

text and visualizations can help guide people towards the intended messages.

Chapter 2 positions this thesis among the prior and concurrent progress on (1) Reading &

authoring text and visualizations and (2) Natural language interfaces for visualizations.

Chapter 3 presents a user study that aims to understand what readers view as the key messages

when text and visualizations do not emphasize the same features. Based on the finding that people

pay more attention to the visually prominent features of visualizations and can thus miss information

presented in the text, we present some design guidelines that can help keep the emphasis of text and

visualizations consistent.

Chapter 4 presents an interactive document reader that helps incorporate both text and vi-

sualizations into the reading experience by dynamically positioning visualizations next to relevant

text and highlighting references. Through a user study, we show how the interface can help read-

ers identify references more quickly and more accurately and parallelize the reading of text and

visualizations.

Chapter 5 presents a chart question answering system that explains how it obtained the answer

using the input text query and the chart. The explanations are visual and refer directly to the visual

features of the chart. Through a user study, we find that the visual explanations from our chart

question answering system significantly improves transparency, and is able to earn trust comparable

to that of human-generated explanations.

Finally, Chapter 6 discusses limitations of this thesis and suggests potential directions for future

work.



Chapter 2

Related Work

This thesis is relevant to two areas of work: (1) Reading & authoring text and visualizations and

(2) Natural language interfaces for visualizations.

2.1 Reading & Authoring Visualizations and Text

The prevalent use of text and visualizations together has attracted much attention from the re-

search community. Researchers have continued to expand our knowledge about how readers parse

information in the two representations, and have designed systems that help authors and readers

communicate effectively through text and visualizations.

Studies have found that text and visualizations both contribute important pieces of information.

Govindaraju et al. [58] found that machine learning algorithms that use both tables and surrounding

text instead of just the table or just the text can achieve a much higher F1 score. Elzer et al. [43]

and Carberry et al. [23] showed that communicative signals in the graphics are often not repeated

by text captions. A group of researchers asked whether using visualizations helps comprehend

information presented in the text, but found inconclusive results; while some studies [22, 52, 53, 96]

found significant improvements in comprehension of information presented in the text, others [81,

110, 123, 124] did not. In fact, a study by Xiong et al. [182] suggests that readers tend to not

integrate information between the two representations.

Many researchers have delved deeper into how readers view text and visualizations together.

One branch of research found that text guides readers’ attention when looking at visualizations.

Gould [57] showed that text directs the readers’ attention through the visualization through an

eye-tracking study. Furthermore, Xiong et al. [182] found that contents of the text that readers

view prior to viewing a chart can influence what they view as visually salient. Another branch of

research has looked more carefully into how readers combine and recall information in visualizations

and text. Borkin et al. [19] showed that the text, such as chart titles, helps people remember

4
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messages in visualizations. Ottley et al. [122] ran an eye-tracking study to understand how readers

would combine the two representations in the context of Bayesian reasoning problems. They find

that readers more easily identify key information using visualizations but more easily extract key

information from text. Kong et al. [85] looked closely into frames and slants in chart titles. They

found that slanted frames in chart titles can bias how people view the visualizations, but people still

consider the visualizations as impartial. In their later work, Kong et al. [86] steer further towards

misalignment between visualizations and their titles. They observed that titles that contradict the

information in the visualizations triggered readers to identify bias. However, the majority of the

readers still viewed visualizations as unbiased. More recently, Lungard and Satyanarayan [104]

introduced a four-level classification of text descriptions of visualizations by their content. Through

a user study, they found that sighted and blind users prefer different types of text descriptions.

Whereas sighted users found level 4 descriptions including context and domain knowledge as the

most useful, blind users did not find them significantly more useful than basic level 1 descriptions

that only explain how the charts encode data.

The work we present in Chapter 3 is along this line of work and studies how readers integrate

information between visualizations and text captions. We specifically study how the emphasis of

charts and text captions affects what people take away as key information.

The decoupling of text and visualizations has been long-known [10, 16, 58, 88, 122, 157, 164]

and has led researchers to build tools to help readers incorporate visualizations into their flow of

reading. A part of the major effort was towards reducing the context switching between the two

representations by moving them closer. Tufte [165] introduced sparklines, which are word-sized

visualizations embedded in the text to reduce the effort in traversing back and forth between text

and visualizations. Chang et al. [25] presented fluid documents that allow document elements to

reorganize and change style to bring supporting information into the main text. Goffin et al. [55]

and Beck and Weiskopf [15] explored ways to add interactivity to sparklines, including ideas from

fluid documents to allow readers to more easily access details on demand. Research has also focused

on connecting information between various representations. Kong et al. [88] present a method of

using crowdsourcing to identify the references between text and bar charts. The work presents an

interface that highlights references between text and bar charts. Wakita and Arimoto [170] support

a similar reading interface for showing links between text and visualizations in industrial reports that

highlights both references and context required to understand the references. TIARA [102, 103, 173]

ties text analysis with interactive visual tools to make summaries of collections of text easier to

understand. Victor [169] proposed the concept of Explorable Explanations, a reading interface

that encourages active reading by interacting with the data presented in text and visualizations.

Dragicevic et al. [40] voice support for applying similar ideas for scientific research papers. The

idea was quickly adapted by media such as Distill [39]. Recently, Crichton [34] proposed connecting

portions of programming language proofs to parts of the text or prior statements to reduce the
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readers’ burden of having to look back and forth to make sense of the proof statements.

Many of the reader-focused prototypes have not put much attention to the amount of authors’

efforts that go into making contents for these document interfaces. The recent publication hiatus of

the interactive academic journal platform for artificial intelligence, Distill [160], shows the importance

of making it easy for authors to write and maintain content for such a model to be sustained.

Fortunately, some researchers have focused on using automated or semi-automated means of helping

authors generate content that involve both text and visualizations. One approach has been to

introduce frameworks for authors. Latif et al. [94] describe a framework for linking sparklines and

text using markup. Idyll [32] is a language for specifying web-based interactive documents. In

addition, major efforts have gone into automation of various portions of the document authoring

process. A major automation effort has gone into generating text captions and annotations. Qian

et al. [130] surveyed existing captions in the real-world and suggested that efforts on automatic

captioning should include an accurate caption generation module as well as a stitching module that

combines the sentences in various ways. Many visual analysis tools include a feature for generating

basic captions for charts based on how data attributes are encoded into visual attributes [35, 37, 70,

159, 167, 176]. As basic captions do not emphasize features in the visualizations, research focusing

on text generation has striven to go beyond the basic encoding information and towards specific

features or external information providing context. Multiple researchers have designed systems or

algorithms that generate text descriptions or summaries of features in graphics and charts [23, 27, 28,

44, 47, 73, 69, 116, 120, 138, 186]. Contextifier [71] automatically adds annotations on noteworthy

features in visualizations of stocks with headlines of news articles. PostGraphe [46] takes data in

tabular form and a list of user-defined intents to generate text and graphics together. Researchers

have also attempted to automate reference extraction between text and visualizations. Badam et

al. [11] parse text and a data table and link information between them to dynamically generate

visuals. Lai et al. [92] used a deep-learning approach to automate finding references between text

and image charts. Kori [95] is a mixed-initiative interface for helping authors build in references

between text and visualizations. Their interface uses natural language processing techniques to offer

suggestions, while also allowing authors to manually construct references.

The interactive document reader we present in Chapter 4 is an automatic tool focused on helping

the readers link text and visualizations by directly highlighting the references between visualizations

and text, while also displaying them closer together. The work is among the first to automatically

determine references between text and visualizations and generate a complete document reading

interface for displaying references.
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2.2 Natural Language Interfaces for Visualizations

The advances in natural language processing techniques have made text an important modality for

interacting with visualizations and data. Researchers have built prototypes that respond to text

queries and generate visual or text outputs. Typically, they create new visualizations [33, 38, 51,

79, 100, 105, 118, 154, 155, 156, 185], edit visualizations to surface relevant information [31, 33,

38, 68, 90, 91, 118, 143, 144, 145, 151, 152, 154, 185], or perform operations on visualizations and

output a result [26, 76, 77, 100, 109, 150]. Because these systems allow even the novice users to

easily express their intent, natural language interfaces have been incorporated into many commercial

data analysis and visualization tools such as Tableau Software [159], Microsoft Power BI [111],

IBM Watson Analytics [72], Amazon QuickSight [7], WolframAlpha [177], Google Sheets [56], and

ThoughtSpot [161].

Researchers have studied how people would use natural language when interacting with visualiza-

tions and incorporated the findings into natural language interface systems. Amar et al. [5] used a col-

lection of questions about visualizations to break analytic activity while using a visualization tool into

ten low-level tasks. Works have focused on dealing with ambiguities and vagueness that are inherent

properties of natural language. A large number of systems handle ambiguities in the input query by

prompting the user to give further clarifications [33, 38, 51, 68, 118, 144, 152, 154, 155, 156, 185].

Hearst et al. [65] and Setlur et al. [147] studied how an intelligent system should respond when given

a query including vague modifiers, such as ‘high’ or ‘expensive’. Many systems also allow users to

ask follow-up queries that require information in previous queries [31, 38, 68, 144, 154, 155, 156].

There have also been effort to help users express queries that lead to meaningful exploration. Many

systems include an autocompletion component based on syntax [51, 56, 68, 90, 91, 111, 144, 154,

159, 161, 177, 185]. Sneak Pique [145] and GeoSneakPique [143] are widget-based autocompletion

systems that guide users towards more meaningful queries by building expectations through pre-

views of the results of queries. Snowy [153] recommends queries based on the significance of data

features and language pragmatics.

A branch of natural language interfaces that has recently gained considerable attention is question

answering. Earlier works on question answering for visualizations have focused on certain types of

visualizations, such as photographic images and videos (e.g., [8, 17, 60, 184]), data tables (e.g., [3, 97,

127, 183, 187, 188]) and text (e.g., [67, 131, 134, 137, 148]). Kafle et al. [76] noted that traditional

question answering methods for photographic images do not generalize to charts and introduced

DVQA, one of the first question answering systems for charts. This pioneering work paved the

way for later researchers to focus on chart question answering as a separate problem. A number

of datasets [26, 78, 109, 162] and chart question answering algorithms based on neural networks

arose [26, 76, 77, 109, 133, 150].

With the advancement of artificial intelligence an increased concern has emerged regarding trans-

parency. Why and how a system makes a decision is often difficult to comprehend. This issue has
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not been overlooked by the research community and many researchers have studied ways to de-

sign systems that are explainable by shedding light on the relationship between the input and

output and its decision-making mechanisms. Some focus on explaining how the system arrived

at each output [1, 135, 136, 149, 174]. Others focus on explaining the system’s general behav-

ior [4, 13, 50, 114, 180]. For instance, the confusion wheel introduced by Alsallakh et al. [4] visualizes

the results of a multi-class classifier on a large number of data points and helps the users see po-

tential reasons for classes of errors. Setlur et al. [144] noted that transparency is also an important

problem for the natural language interface community to address. Yet, not much work has been

done to introduce explainability into natural language interfaces.

The work we present in Chapter 5 is the first to address issues around transparency and trust of

chart question answering systems through visual explanations. Since the work, researchers focusing

on chart question answering have begun to take transparency into account. Singh and Shekhar [150]

demonstrated that their structural transformer based model can achieve a level of interpretability.



Chapter 3

How Readers Integrate Charts and

Captions
1

Charts often contain visually prominent features that draw attention to aspects of the data

and include text captions that emphasize aspects of the data. Through a crowdsourced study, we

explore how readers gather takeaways when considering charts and captions together. We first ask

participants to mark visually prominent regions in a set of line charts. We then generate text captions

based on the prominent features and ask participants to report their takeaways after observing chart-

caption pairs. We find that when both the chart and caption describe a high-prominence feature,

readers treat the doubly emphasized high-prominence feature as the takeaway; when the caption

describes a low-prominence chart feature, readers rely on the chart and report a higher-prominence

feature as the takeaway. We also find that external information that provides context, helps further

convey the caption’s message to the reader. We use these findings to provide guidelines for authoring

effective chart-caption pairs.

1The contents of this chapter has been adapted from Kim et al. [84] (https://doi.org/10.1145/3411764.3445443).
The thesis author was the first author and a major contributor to the work.

9
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3.1 Introduction

Charts provide graphical representations of data that can draw a reader’s attention to various visual

features such as outliers and trends. Readers are initially drawn towards the most visually salient

components in the chart such as the chart title and the labels [107]. However, they eventually

apply their cognitive processes to extract meaning from the most prominent chart features [24, 163].

Consider the line chart at the beginning of this article. What do you think are the main visual

features of the chart and what are its key takeaways?

Such charts are often accompanied by text captions that emphasize specific aspects of the data

as chosen by the chart author. In some cases, the data emphasized in the caption corresponds to

the most visually prominent features of the chart and in other cases it does not. Prior studies have

shown that charts with captions can improve both recall and comprehension of some aspects of the

underlying information, compared to seeing the chart or the caption text alone [21, 66, 93, 119]. But

far less is known about how readers integrate information between charts and captions, especially

when the data emphasized by the visually prominent features of the chart differs from the data that

is emphasized in the caption.

Consider the visually prominent features in our initial line chart and then consider each of the

following caption possibilities one at a time. How do your takeaways change with each one?

(1) The chart shows the 30-year fixed mortgage rate between 1970 and 2018.

(2) The 30-year fixed mortgage rate increased slightly from 1997 to 1999.

(3) The 30-year fixed mortgage rate reached its peak of 18.45% in 1981.

(4) The 30-year fixed mortgage rate reached its peak of 18.45% in 1981 due to runaway inflation.

The first caption simply describes the dimensions graphed in the chart and only provides redun-

dant information that could be read from the axis labels. Automated caption generation tools often

create such basic descriptive captions [111, 159]. The next three captions each emphasizes aspects

of the data corresponding to a visual feature of the chart (i.e., upward trend, peak) by explicitly

mentioning the corresponding data point or trend. However, the second caption emphasizes a fea-

ture of low visual prominence – a relatively local and small rise in the chart between 1997 and 1999.

The third caption describes the most visually prominent feature of the chart – the tallest peak that

occurs in 1981. The final caption also describes this most visually prominent feature, but adds

external information that is not present in the chart and provides context for the data.

In this chapter, we examine two main hypotheses - (1) When a caption emphasizes more visually

prominent features of the chart, people are more likely to treat those features as the takeaway; even

when a caption emphasizes a less visually prominent feature, people are still more likely to treat a

more visually prominent feature in the chart as the takeaway. (2) When a caption contains external

information for context, the information serves to further emphasize the feature described in the

caption and readers are therefore more likely to treat that feature as the takeaway.
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We considered univariate line charts for our work because they are among the most common

basic charts and are easily parameterizable, making them useful for the initial exploration of our

hypotheses. We synthesized 27 single charts with carefully chosen parameters and collected 16 real-

world single line charts to confirm the generalizability of our findings. We ran a data collection

activity on the 43 single-line charts, where we asked 219 participants to mark visually prominent

regions on the line charts. We generated text captions for the ranked set of prominent features using

templates to control variations in natural language. Finally, we conducted a crowdsourced study

with a new set of 2168 participants to report their takeaways after seeing the chart-caption pairs.

Our findings from the study support both of our hypotheses. Referring back to our initial line

chart, when the caption mentions the most prominent feature as in the third caption (i.e., the peak

in 1981), readers will probably take away information from that feature. When the caption mentions

a less prominent feature as in the second caption (i.e., the increase from 1997 to 1999), there is a

mismatch in the message between the chart and the caption. Readers will have a strong tendency

to go with the message conveyed in the chart and take away information about the peak value.

Finally, the external information about the peak value present in the fourth caption will reinforce

the message in the caption and the readers will more likely take away information about the peak.

These findings help better understand the relationship between charts and their captions when

conveying information about certain aspects of the data to the reader. Based on these studies, we

provide guidelines for authoring charts and captions together in order to emphasize the author’s

intended takeaways. Visualization authors can more effectively convey their message to readers by

ensuring that both charts and captions emphasize the same set of features. Specifically, authors

could make visual features that are related to their key message, more prominent through visual

cues (e.g., highlighting or zooming into a focus area, adding annotations [42, 98] or include external

information in the caption to further emphasize the feature described in the caption. Often, an

alternative chart representation may be more conducive to making certain visual features more

prominent.

3.2 Study

We conducted a crowdsourced study to understand how captions describing features of varying

prominence levels and the effect of including or not including external information for context,

interacts with the chart in forming the readers’ takeaways. Through an initial data collection

activity, we asked participants to identify features in the line charts that they thought were visually

prominent. We generated captions corresponding to those marked features of various levels of

prominence. We then ran a study asking a new set of participants to type their takeaways after

viewing a chart and caption pair. Figure 3.1 shows the study pipeline.
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Figure 3.1: Our study pipeline. The inputs to the study are 27 synthetic and 16 real-world charts.
Yellow boxes represent steps where we employed crowdsourcing. The green box indicates that the
step did not involve crowdsourcing.

3.2.1 Datasets

We ran the study on two different datasets - (1) synthetically generated line charts that we designed

to ensure good coverage of a variety of visual features that occur in line charts and (2) line charts

gathered from real-world sources to serve as a more ecologically valid setting for our study.

Synthetic Charts. We generated a set of synthetic line charts with common visual features (i.e.,

trends, extrema, and inflection points) while maintaining realistic global shapes. To keep the overall

design space tractable, we limited global shapes to include at most two trends (i.e., up, down, and

flat) and added at most one perturbation to induce features (e.g. inflection points) in either the

positive or negative direction, resulting in a total of 27 data shapes (Figure 3.2). To provide context

to the charts, we labeled the x-axis with time unit values implying that the chart represents a time

series. Specifically, we selected the start and end of the x-axis from the set of years {1900, 1910,

1920,..., 2020}. To label the y-axis, we chose a domain for the y-axis and its value range from the

MassVis dataset [20].

Real-world Charts. To build a more ecologically representative dataset of line charts with various

shapes, styles, and domains, we collected 16 charts (Figure 3.3) from sources such as The Washington

Post [172], Pew Research [128], Wikipedia [175], and Tableau Public [158]. Because our study focuses

on prominence arising from intrinsic features in line charts, we removed all graphical elements

that could potentially affect the prominence of the features in the charts (e.g., text annotations,

highlighting, and background shading). In addition, we removed all text except for the axis labels

(e.g. chart titles) so that the captions serve as the primary source of text provided with the chart.

We added axis labels to those charts without labels to ensure readability.

3.2.2 Identify Visually Prominent Features

To identify the most visually prominent features in our dataset, we recruited at least five workers

from Amazon Mechanical Turk [6] for each line chart and asked them to draw rectangular bounding

boxes around the top three most prominent features in the chart. We also asked them to briefly



CHAPTER 3. HOW READERS INTEGRATE CHARTS AND CAPTIONS 13

Figure 3.2: The 27 data shapes generated for the study and their top three prominent features.
Columns represent the nine possible global shapes and rows represent the three possible local outlier
types. Here, ‘flat’, ‘inc’, and ‘dec’ denote flat, increasing, and decreasing trends respectively. ‘none’,
‘neg’, and ‘pos’ denote none, negative, and positive outlier types respectively. Red, green, and blue
regions indicate the top three prominent features in order.

Figure 3.3: The 16 real-world charts. Red, green, and blue regions indicate the top three prominent
features in order.
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Figure 3.4: The line on the bottom left shows the prominence curve for the line chart above. From
this curve, we obtain the most prominent (red), the second most prominent (green), and the third
most prominent (blue) features in the chart. The 10 caption variants (one of them being a no-
caption variant) generated based on these prominent features, are shown on the right. The text
colors indicate the types of fill-in values based on the caption templates; purple for dimensions,
fuchsia for the feature description, blue for data values, and brown for the time period.

describe each marked feature in their own words so that we could differentiate between trend and

slope features versus peak, inflection, and other point features.

In each trial of the data collection, we presented one of the 43 line charts. Because we were

seeking subjective responses, each participant completed only one trial to avoid biases that might

arise from repeated exposure to the task. Participation was limited to English speakers in the U.S.

with at least a 98% acceptance rate and 5000 approved tasks. We payed a rate equivalent to $2 /

10 mins.

We asked a total of 219 participants (average of 5.09 per chart) to label the top three features for

a total of 657 prominence boxes. We then aggregated all of the feature bounding boxes provided by

first projecting each box onto the x-axis, to form a 1D interval (Figure 3.4 upper left). We weighted

each interval inversely proportional to the ranking provided by the participant. Specifically, the top

ranked feature bounding box for each participant was assigned a weight of 3, while the 3rd ranked

feature was assigned a weight of 1. We noticed that bounding boxes corresponding to the same

features were pretty consistent in the central regions although the exact boundary drawn by the

participants varied. In order to boost the signal in the central regions while suppressing the noise

in the boundary regions, we multiplied the weight assigned to each interval by a Gaussian factor

centered at the interval and with standard deviation set to half the width of the interval. Summing
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all of the Gaussian weighted intervals, we obtained a prominence curve (Figure 3.4 bottom left).

However, a region defined by a local maximum of the curve may not have an obvious one-to-one

mapping with a feature in the chart because it roughly indicates a high prominence region instead

of pinpointing a specific visual feature. We considered all the bounding boxes containing the region

along with the participants’ text descriptions of the features to associate the local maximum to a

certain feature. We iterated this process for the region around the top three local maximum to

identify three prominent features. Results of the algorithm for the charts in our dataset are shown

in Figures 3.2 and 3.3.

3.2.3 Caption Generation

Feature Template
Extremum [dimension] reached its [extrema-word] of [value] in [time-period].

Trend [dimension] [slope-word] in / between [time-period].

Inflection [dimension] started [slope-word] in [time-period].

Point [dimension] was [value] in [time-period].

Table 3.1: Examples of templates we employed for generating captions about specific features. The
text colors indicate the types of fill-in values based on the caption templates; purple for dimensions,
fuchsia for feature descriptions, blue for data values, and brown for time periods. Examples of
filled in captions are in Figure 3.4 (right).

To carefully control the language used in the captions and keep the number of conditions man-

ageable, we generated captions using templates that only vary the feature mentioned and whether

external information is introduced. Using the templates, we produced the following caption vari-

ants: (1) two captions (one with and one without external information) for each of the top three

visually prominent features identified earlier, (2) two caption (one with and one without external

information) describing a minimally prominent feature that is neither an extremum nor an inflection

point, and (3) a basic caption that simply describes the domain represented in the chart without

describing a particular feature.

We generated 10 caption variants (including the no caption variant in which we presented a chart

without caption) for each of the 43 charts, providing a total of 430 chart-caption pairs. We manually

generated all the captions rather than using the original captions for the real-world charts to control

for word use and grammatical structure. For real-world charts, we searched for information from

the document that they originally appeared in, to extract information not present in the charts. In

particular, we looked for information about potential reasons for trends or change (e.g., the external

information included in the caption about the most prominent feature in Figure 3.4) or comparisons

with a similar entity (e.g., comparison between Macron’s approval rating with Trump’s approval

rating in the second most prominent feature in Figure 3.4). For synthetically generated charts and
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real-world charts that were not accompanied with additional information about their features, we

referenced Wikipedia [175] articles to create a plausible context.

We employed simple language templates for caption generation to minimize the effects of linguistic

variation (Table 3.1). The captions generated with the templates were allowed to vary in the features

they describe in the charts. To make the descriptions of the features appear natural, we used

words the participants used to describe the features during the prominent feature collection phase.

Because the participants usually described each of the features using a noun occasionally with an

adjective modifier (e.g., “sharp increase”), we manually lemmatized the words and modified the

forms to correctly fit into our template (e.g., “sharply increased” in the caption about the third

most prominent figure in Figure 3.4).

3.2.4 Collect Takeaways for Charts & Captions

Design

We ran a between-subjects design study for collecting takeaways for charts and their captions.

For each of the 43 charts, we presented one of the ten variants (including the no caption variant)

(examples in Figure 3.4):

(1) [1st w/o ext] Caption for most prominent feature, no external info.

(2) [1st w/ ext] Caption for most prominent feature, has external info.

(3) [2nd w/o ext] Caption for 2nd most prominent feature, no external info.

(4) [2nd w/ ext] Caption for 2nd most prominent feature, has external info.

(5) [3rd w/o ext] Caption for 3rd most prominent feature, no external info.

(6) [3rd w/ ext] Caption for 3rd most prominent feature, has external info.

(7) [non-pro w/o ext] Caption for non-prominent feature, no external info.

(8) [non-pro w/ ext] Caption for non-prominent feature, has external info.

(9) [basic] Caption about domain represented in the chart and x-range

(10) [no cap] No caption

Procedure

The study began with a screening test to ensure that the participant had a basic understanding of

line charts and could read values and encodings, extract extrema and trends, and compare values

(Figure 3.5 first step). Only participants who passed this test were allowed to continue with the

study. After they read the instructions, the participants were presented with a chart and a caption

underneath the chart, similar to most charts in the real world (unless it is the no-caption variant)

(Figure 3.5 second step). We did not impose a time constraint on the amount of time spent looking

at the chart and the caption to allow participants sufficient time to read and digest the information

at their own pace, like document reading in the real world. On the next screen for collecting
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Figure 3.5: The procedure for collecting takeaways for chart-caption pairs. The images show sim-
plified versions of the screen that the participants saw during each step.

takeaways, the chart and the caption were removed to constrain readers to provide the takeaways

based on memory instead of simply re-reading from the chart and the caption. The participants

were asked to list as many text takeaways as they could in the order of importance (Figure 3.5 third

step). Finally, using a 5-point Likert scale, we asked how much they relied on the chart and caption

individually when determining their takeaways.

We asked each participant to provide takeaways for exactly one chart-caption pair to prevent

potential biases from already having read a different caption about a chart. From 2168 participants

(average of 5.04 per chart-caption pair), we collected a total of 4953 takeaways (average of 2.28 per

participant).

Labeling Takeaways

In order to analyze the takeaways, we manually labeled each takeaway with the corresponding chart

feature described. Since participants often described multiple chart features in a single takeaway, we

first split each takeaway into separate takeaways for each visual feature mentioned. At the end of this

process, we identified on average 1.31 features per takeaway. If the referenced feature was one of three

most prominent features or the non-prominent feature we identified during caption generation, we

labeled the takeaway with the corresponding feature, otherwise we labeled the takeaway as referring

to an other feature. If the takeaway did not refer to any specific feature in the chart, we labeled

the takeaway as a non-feature. Examples of non-feature takeaways include an extrapolation such as

“The value will continue to rise after 2020” or a judgment such as “I should buy gold” when looking

at a chart showing the price of gold over time. One of the authors labeled the features and discussed

any confusing cases with the other authors to converge on the final label.
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Figure 3.6: Study results. Each column shows bar charts for each prominence level mentioned in
the caption (i.e., the leftmost bar chart is for captions mentioning the 1st ranked visual feature, the
next bar chart is for captions mentioning the 2nd ranked visual feature, while the rightmost bar
chart is for the no-caption condition). Within a bar chart, each bar represents the percentage of
takeaways mentioning the visual feature at that prominence level. For example, the leftmost bar in
each bar chart represents the percentage of total takeaways that mention the top ranked takeaway.
Each bar chart also reports the percentage of Other features and Non-features that were mentioned
in the takeaways. These charts aggregate data for captions with and without external information.
The percentages do not sum to 100% as some takeaways mention multiple takeaways.

3.3 Results

The primary goal of our study is to understand what readers take away when charts and captions are

presented together and how the emphasis on different prominent features and presence of external

information affects the takeaways. We analyze our results with respect to two hypotheses:

[H1] When captions emphasize more visually prominent features of the chart, people are more likely

to treat the features as the takeaway; when a caption emphasizes a less visually prominent feature,

people are less likely to treat that feature as the takeaway and more likely to treat a more visually

prominent feature in the chart as the takeaway.

[H2] When captions contain external information for context, the external information serves to

further emphasize the feature presented in the caption and people are therefore more likely to treat

that feature as the takeaway, compared to when the caption does not contain external information.

Assessing H1. To evaluate H1, we examine how varying the prominence of a visual feature

mentioned in a caption (independent variable), affects the visual feature mentioned in the takeaways
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Figure 3.7: (Top row) Comparison of percentages of takeaways that mention the same feature as
the caption for the synthetic (a) and real-world (b) datasets (i.e., darker bars on the left correspond
to the red bar from Figure 3.6a, the green bar from 3.6b, the blue bar from 3.6c, and the grey bar
from 3.6d), and percentages of takeaways that mention the feature in the no caption condition (i.e.,
the right lighter-hued bars in the chart correspond to the bars from Figure 3.6e). (Middle row)
Percentage of takeaways mentioning the visual features at each prominence level when presented
with the basic caption. (Bottom row) Dividing the left bars in charts (top row)a and (top row)b
based on whether the caption contains external information (purple bars) or does not (olive bars).
The leftmost Any bars show aggregates over all prominence levels. Asterisks indicate significant
difference.

(dependent variable) by our study participants. Figure 3.6 summarizes the study results for the

synthetic charts (top row) and the real-world charts (bottom row).

In general, these results suggest that when a caption mentions visual features of differing promi-

nence levels, the takeaways also differ. Omnibus Pearson’s chi-squared tests confirm a signifi-

cant difference between the bar charts for the 5 different caption conditions in both the synthetic

(χ2(20) = 202.211, p < 0.001) and real world (χ2(20) = 207.573, p < 0.001) datasets. These results

also suggest that when the caption mentions a specific feature, the takeaways also tend to mention

that feature, when compared to the baseline ‘no-caption’ condition.

Figures 3.7a and 3.7b collect the percentage of takeaways that mention the same feature as in

the caption for the synthetic and the real-world datasets respectively (left darker bars) and compare
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Caption-Takeaway 1 Caption-Takeaway 2
Source Caption Takeaway Caption Takeaway Z p

Block 1. Takeaways mentioning feature in caption vs. without caption

Synthetic

1st 1st no cap 1st 2.846 0.002∗

2nd 2nd no cap 2nd 4.641 < 0.001∗

3rd 3rd no cap 3rd 3.643 0.001∗

non-pro non-pro no cap non-pro 6.195 < 0.001∗

Real-world

1st 1st no cap 1st 1.660 0.049
2nd 2nd no cap 2nd 4.225 < 0.001∗

3rd 3rd no cap 3rd 3.347 < 0.001∗

non-pro non-pro no cap non-pro 4.732 < 0.001∗

Block 2. Between takeaways mentioning feature in caption

Synthetic
1st 1st 2nd 2nd 1.782 0.037
2nd 2nd 3rd 3rd 0.705 0.044
3rd 3rd non-pro non-pro 8.989 < 0.001∗

Real-world
1st 1st 2nd 2nd 3.708 < 0.001∗

2nd 2nd 3rd 3rd 0.363 0.358
3rd 3rd non-pro non-pro 5.940 < 0.001∗

Block 3. When caption = 1st: takeaway = 1st vs. takeaway 6= 1st

Synthetic
1st 1st 1st 2nd 8.168 < 0.001∗

1st 1st 1st 3rd 8.275 < 0.001∗

1st 1st 1st non-pro 19.463 < 0.001∗

Real-world
1st 1st 1st 2nd 9.981 < 0.001∗

1st 1st 1st 3rd 11.301 < 0.001∗

1st 1st 1st non-pro 11.536 < 0.001∗

Block 4. When caption 6= 1st: takeaway = 1st vs. takeaway = caption

Synthetic
2nd 2nd 2nd 1st 3.829 < 0.001∗

3rd 3rd 3rd 1st 0.258 0.398
non-pro 1st non-pro non-pro 8.342 < 0.001∗

Real-world
2nd 2nd 2nd 1st 2.010 0.022
3rd 3rd 3rd 1st 2.521 0.006∗

non-pro 1st non-pro non-pro 5.454 < 0.001∗

Table 3.2: Pairwise Z-test results of comparisons between various ratios of takeaways that mention
a certain feature (third, fifth columns) when provided a caption describing a certain feature (second,
fourth columns). The tests were one-sided with the alternative hypothesis that the ratio of takeaways
for ‘Caption-Takeaway 1’ is greater than the ratio of takeaways for ‘Caption-Takeaway 2’. Asterisks
indicate significance with Bonferroni correction.

them with the percentages corresponding to the no-caption case (lighter-hued bars on the right).

We see that captions do play a role in forming takeaways and the takeaway is thus more likely

to mention that feature (i.e., each darker bar in Figures 3.7a and 3.7b is usually longer than the

corresponding lighter-hued bar to its right). Planned pairwise Z-tests with Bonferroni correction are

shown in Table 3.2. Block 1 shows that the differences between the corresponding color bars are

significant for the second most prominent, third most prominent, and non-prominent features. For

the most prominent feature, we find that while a higher proportion of people mentioned the most

prominent feature in their takeaways when the caption mentions it, the difference is only significant

for the synthetic charts. We believe that this is possibly because people already include the most

prominent features in their takeaways in the no-caption condition and the difference hence is not

significant.
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While we confirmed that both the chart and caption play a role as to what the reader takes away

from them, the key question is how the chart and the caption interact with each other – Do they

have a synergistic effect when they emphasize the same feature? Which one wins over when they

emphasize different features? Referring to Figure 3.6, we see the synergistic effect of the double-

emphasis from the chart and caption when they emphasize the same feature (Figures 3.6a and 3.6f).

In particular, the participants took away from the most prominent feature significantly more often

than from any other feature in the chart (Table 3.2 Block 3). When the caption diverged from the

chart and described a feature that was not prominent, the participants relied more on the chart

and took away from the most prominent feature significantly more than the feature described in the

caption (Table 3.2 Block 4, rows 3 and 6; Figures 3.6d and 3.6i). When the caption did not diverge

as much and described the second or the third most prominent feature, the takeaways mentioned

the feature described in the caption more than the most prominent feature (Table 3.2 Block 4, rows

1, 2, 4, and 5; Figures 3.6b, 3.6c, 3.6g, and 3.6h). However, the difference was smaller than the

difference between the ratio of people who took away from the most prominent feature and the ratio

of people who took away from any of the other features. We believe this result may be due to the

fact that the charts still had more influence on the readers than the captions as the second and the

third most prominent feature are still among the top prominent features and are among the features

emphasized by the chart.

We observe from Figure 3.7 that the chart also plays an important role in what people take away

– when a caption mentions a higher-prominent feature, the takeaways more consistently mentions

that feature. Specifically, we see that the bars for the higher-prominence features are taller than

the bars for the lower-prominence features, indicating an increase in the effectiveness of chart in

reinforcing the message in the caption. Planned pairwise Z-tests with Bonferroni correction between

each subsequent pair of bars (red bar vs. green bar, green bar vs. blue bar, blue bar vs. gray bar)

(Table 3.2 Block 2) find that the red bar vs. green bar is significant for real-world charts and the

blue bar vs. gray bar is significant both synthetic and real-world charts, whereas the green bar vs.

blue bar difference is not significant. We believe that the visual prominence levels for some of the

top-ranked features are similar in several charts (i.e., the difference in prominence between the 1st

and 2nd ranked features is small) in our dataset and this results in a smaller difference between

them, although the trend is in the right direction.

Table 3.3 shows average and standard deviation of how much the participants reported to have

relied on the chart and the caption respectively on a 5-point Likert scale. The results in Table 3.3

Block 1 suggest that the participants drew information from both the chart and the caption when

determining their takeaways, although they consistently relied on the chart more than the caption.

These results potentially shed light on why participants took away more often from the chart than

the caption when they start to diverge – they relied more on the chart than the caption. The results

further suggest that the participants’ tendency to rely on the charts grew while their tendency to
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Reported Reliance
Source Caption Type Chart Caption

Block 1. Overall
Synthetic all 4.675± 0.670 2.624± 1.609
Real-world all 4.536± 0.784 2.779± 1.679

Block 2. Prominence

Synthetic

1st 4.590± 0.711 3.249± 1.327
2nd 4.567± 0.814 3.082± 1.433
3rd 4.567± 0.726 3.059± 1.408
non-pro 4.775± 0.549 2.447± 1.429
basic 4.850± 0.377 2.593± 1.320

Real-world

1st 4.494± 0.838 3.405± 1.481
2nd 4.462± 0.890 3.165± 1.359
3rd 4.503± 0.805 3.236± 1.354
non-pro 4.595± 0.718 2.680± 1.545
basic 4.628± 0.601 2.718± 1.568

Block 3. External Information

Synthetic
w/o ext 4.679± 0.688 2.798± 1.402
w/ ext 4.573± 0.728 3.110± 1.448

Real-world
w/o ext 4.606± 0.741 3.061± 1.481
w/ ext 4.424± 0.875 3.194± 1.439

Table 3.3: The reported reliance on the chart and the caption respectively on 5-point Likert scales.
Block 1 shows the reported reliance across all the captions. Block 2 shows the reported reliance
depending on the prominence of the feature described in the chart and Block 3 shows the reported
reliance depending on the inclusion of external information. The values are reported in the form of
µ± σ.

rely on the captions declined as the prominence of the feature described in the caption decreased

(Table 3.3 Block 2). We found a significant drop in the self-reported reliance on the caption when the

caption described a non-prominent feature compared to when it described the third-most prominent

feature (synthetic: Mann-Whitney U = 28941, p < 0.001; real-world: Mann-Whitney U = 9666,

p < 0.001) whereas the increase in the reported reliance on the chart when the caption described

a non-prominent feature compared to when it described the third-most prominent feature was only

significant with the synthetic charts (Mann-Whitney U = 32844.5, p < 0.001). Although the general

trend is in the right direction, we did not find significant differences in the reliance scores when the

caption mentioned one of the top three prominent features. This may be because the difference in

prominence is not as great among these features as it is with the non-prominent feature. These

results are in line with our findings from the takeaways; we find that when the chart contains a

high-prominence visual feature, but the caption emphasizes a low-prominence feature, participants

relied more on the chart and less on the caption.

Considering all these results together suggests that we can accept our hypothesis H1 – readers

take away from the highly prominent features when the chart and caption both emphasize the same

feature and that their inclination to rely more on the most prominent feature instead of the feature

described in the caption becomes greater when the caption describes a less prominent feature.
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H1 Additional Results. We also collected takeaways for charts with basic captions that describe

the axes of the chart. (Figure 3.7 - middle row). We find that the percentage of takeaways for each

of the features is similar to that of the no-caption condition. In fact, Pearson’s chi-square test finds

no significant difference between the takeaway histograms of the basic caption and the no-caption

conditions (synthetic: χ2(4) = 1.564, p = 0.815; real-world: χ2(4) = 7.168, p = 0.127). While many

automated captioning tools [159, 111] generate captions corresponding to our basic captions that

do not describe specific features in the chart, we were unable to find evidence that these captions

affect what people take away. Such captions may help readers with accessibility needs; however, we

believe further exploration will help future systems determine appropriate uses for such captions.

Assessing H2. To evaluate H2, we examine whether including external content information in

the caption makes it more likely for readers to take away the feature mentioned in the caption. We

find that people are significantly more likely to mention the feature described in the caption when

it includes external information than when it does not (Figures 3.7e and Figures 3.7f Any bars). A

pairwise Z-test finds significant difference between these ratios (synthetic: Z = 2.273, p = 0.011; real-

world: Z = 2.032, p = 0.021). In addition, the reported reliance on the chart and the captions shifted

towards the captions with external information, which is in-line with our findings (Figure 3.3 Block

3). Specifically, the reported reliance on the chart was significantly lower with external information

(synthetic: Mann-Whitney U = 137318, p < 0.001; real-world: Mann-Whitney U = 45292, p =

0.001); the reported reliance on the caption was higher with external information, but the difference

was only significant for the synthetic charts (synthetic: Mann-Whitney U = 131594, p < 0.001;

real-world: Mann-Whitney U = 48599.5, p = 0.132).

The results together suggest that we can accept H2 that states that including external informa-

tion in the caption helps reinforce the message in the caption and users are more likely to take away

from the feature described in the caption.

H2 Additional Results. Figure 3.7 (bottom row) breaks down the ratio of the takeaways that

mention the feature described in the caption by level of prominence of the feature. The figure shows

that there is usually an increase in the ratio of the takeaways that mentioned the feature described

in the caption when the caption included external information for each level of prominence. Among

the differences, we only found significant difference when the caption mentioned a non-prominent

feature for synthetic charts (Z = 3.027, p = 0.001). Further study could shed light on the correlation

between the prominence of the feature described in the caption and how external information affects

the readers’ takeaways.

3.4 Design Guidelines

Our findings indicate that the readers will take away from the feature doubly emphasized by both

the chart and caption if they provide a coherent message. However, when the chart and caption
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(a) “The cheap Yen and PM Abe’s tourism policy caused
the number of tourists in Japan to steeply rise between 2011
and 2018.”

(b) “Due to the 2008 Financial Crisis, the number of
tourists in Japan decreased in 2009.”

Figure 3.8: Examples of chart-caption pairs authored to emphasize the same feature in the data. (a)
Both the caption and chart emphasize the sharp positive trend. (b) The original chart is modified
to zoom into a portion of the time range and the feature is made more visually prominent with an
annotation showing the dip in the number of tourists. The caption describes that dip with additional
context.

diverge in terms of the feature that they are emphasizing, readers are less likely to use information

from the caption in their takeaways. To improve the efficacy of the chart-caption pair, authors could

(1) design the chart to make the feature described in the caption more prominent and (2) include

external information in the caption to give more context to the information in the caption.

There are several ways for authors to emphasize aspects of the data in a chart so that readers’

attention is drawn to these visual features. One technique is to ensure that aspects of the data

such as trends and outliers are presented at the right level of detail or interval range; too-broad of

a measurement interval may hide a signal. For example, assume that we were given the chart in

Figure 3.8a with the caption in Figure 3.8b. The decrease in 2009 is not very prominent because

the large increase starting in 2011 overshadows the decrease. Zooming closer to the intended feature
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and cropping out irrelevant features (Figure 3.8b), helps make the feature more visually promi-

nent. However, when zooming into the data in this manner, authors must take precaution to avoid

removing important information or rendering the chart misleading [121, 125].

A simple way to further facilitate effective chart reading is to enhance the visualization with

highlighting and graphical overlays such as annotations to guide the audience’s attention to the

image area they are describing [87] (Figure 3.8b). Sometimes, a different chart altogether may be

more effective to emphasize a particular aspect of the data. For example, converting continuous data

in line charts into discrete values could help emphasize individual values that the author would like

to focus on. The consistency between the redesigned chart-caption pairs helps readers take away

from the doubly emphasized feature (Figure 3.8).



Chapter 4

Linking Visualizations and Text
1

Figure 4.1: Documents often include tables that provide evidence for arguments made in the main
body text. In explicit references (left), the sentence text “Of the successful searchers, 44% said
the information they found online affected a decision about how to treat an illness or cope with a
medical condition” directly matches the text and numbers in the table cells (yellow highlights). In
implicit references (right), the sentence text “... Of those with dial-up connections, significantly
more men than women said they were interested in getting high speed connections” corresponds to
row and column headers and readers must identify data cells at the intersection of two – i.e. the
cells containing 47 and 34. Our interactive document reader automatically extracts such references
for an input PDF document. Readers can click on a sentence to highlight the corresponding table
cells and vice versa.

Document authors commonly use tables to support arguments presented in the text. But, because

tables are usually separate from the main body text, readers must split their attention between

different parts of the document. We present an interactive document reader that automatically

links document text with corresponding table cells. Readers can select a sentence (or tables cells)

and our reader highlights the relevant table cells (or sentences). We provide an automatic pipeline

1The contents of this chapter has been adapted from Kim et al. [83] (https://doi.org/10.1145/3242587.3242617).
The thesis author was the first author and a major contributor to the work.

26
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for extracting such references between sentence text and table cells for existing PDF documents that

combines structural analysis of tables with natural language processing and rule-based matching. On

a test corpus of 330 (sentence, table) pairs, our pipeline correctly extracts 48.8% of the references.

An additional 30.5% contain only false negative (FN) errors – the reference is missing table cells.

The remaining 20.7% contain false positive (FP) errors – the reference includes extraneous table

cells and could therefore mislead readers. A user study finds that despite such errors, our interactive

document reader helps readers match sentences with corresponding table cells more accurately and

quickly than a baseline document reader.

4.1 Introduction

Data tables frequently appear in news articles, financial reports and scientific articles. For example,

a news article may describe a trend, a relationship or a comparison in the text, and include a

table that provides additional corroborating data. Fully understanding the document often requires

mentally connecting and making sense of the text together with the corresponding table. In fact,

previous work has shown that people can achieve much higher recall by jointly reading the text and

tables in a journal article than by looking at the tables or the surrounding text alone [58].

Unfortunately, reading text together with a data table is challenging. As shown in Figure 4.1,

the body text can contain explicit references (left), where the sentence text directly matches text

in table cells or implicit references (right), where the sentence text matches the text in row and

column header cells, but leaves it up to readers to identify the data cells at the intersection of

the two. Moreover, readers must split their attention between the text and table and mentally

integrate the two mutually dependent information sources. Such split-attention increases cognitive

load [10, 49]. As a consequence, people often struggle to associate the text with the corresponding

cells in the table, especially if the table is large and the text references multiple cells. Moreover,

readers must break their flow and move their locus of attention from the main body text to the table

and back again. The more time it takes to find the corresponding table cells, the more difficult it is

to smoothly resume reading the main body text. Although text references and corresponding table

cells are intended to be read together, many readers end up trying to make sense of them separately.

We present an interactive document reader designed to facilitate reading such documents and

reduce split attention. Readers can select a sentence (or table cells) and our reader highlights

the corresponding table cells (or sentences). We provide an automatic pipeline for extracting such

references between body text and table cells for an input PDF document. After breaking the

document into sentences and tables, our pipeline considers each (sentence,table) pair and operates

in three main stages: (1) In the table structure extraction stage, it identifies the data type (e.g. text,

number, percent, money, etc.) and cell type (title, header, or data) of each table cell. (2) It next

matches sentence text to cells based on natural language processing (NLP) techniques. (3) Finally,
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Figure 4.2: Our automatic reference extraction pipeline. The input to the pipeline is a (sentence,
table) pair and the output is a reference matching the sentence with a corresponding set of table
cells it refers to. The reference includes both the cell indices (Figure 4.3a) and cell contents.

it applies rule-based refinement of the matches based on the table structure. For each sentence, the

pipeline either outputs a reference consisting of one or more matching cells in the table, or it outputs

a null reference if it cannot find such a match.

We compare our automatically generated references to human-generated gold standard references

for a set of 330 (sentence, table) pairs gathered from a variety of source documents written for

general audiences (e.g. Pew research reports [128], articles from the Economist magazine [41]) and

for computer science researchers (e.g. ACL papers). Our pipeline correctly extracts 48.8% of the

references. An additional 30.5% contain only false negative errors – the reference is incomplete

and missing one or more table cells, while the remaining 20.7% contain false positive errors – the

reference includes extraneous table cells and could therefore mislead readers.

We also conduct a controlled user study comparing our interactive document reader with a

baseline reader that does not link text with tables. We find that despite the errors in reference

extraction, when using our interface, participants match sentence text to table cells 26.4% more

accurately and spend 22.9% less time than when using the baseline interface. These results suggest

that automatically extracting and highlighting the links between document text and table cells

reduces the split attention problem and facilitates reading the whole document. Our study also

finds an asymmetry in the effects of FP errors and FN errors on this matching task. Participants are

23.2% less accurate and 27.8% slower at matching sentence text to table cells when the highlighted

reference contains an FP error compared to highlighting a reference that contains only FN errors.

This asymmetry suggests that FP errors are far more harmful to readers than FN errors because

FP errors are misleading, while FN errors only omit information.

4.2 Automatic Reference Extraction

Our automatic reference extraction algorithm takes a PDF document as input and outputs references

between each sentence in the text and cells in a table (Figure 4.2). The algorithm first breaks the

main body text in the PDF into sentences using the Stanford CoreNLP toolkit [106]. It also identifies

and extracts all the tables in HTML format using Adobe Acrobat Reader [2]. Our algorithm then
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(a) Row and column indices and span values (b) Cell types (title, headers, data)

Figure 4.3: In Stage 1 of our pipeline, we first compute the spatial row and column indices
[rowindex, colindex] as well as the rowspan and colspan values for each cell (a). Specifically, we
set [rowindex,colindex] = [0,0] for the top left cell and process the HTML table tags from top to
bottom, left to right, incrementing colindex or rowindex each time we encounter a </td> or </tr>

tag respectively. We similarly annotate each cell with the HTML <rowspan> and <colspan> in-
formation. Later in Stage 1, we use this spatial information to identify the regular subgrid (red
outline). We then classify each cell of the table as a title cell, header cell or data cell using the span
and subgrid structure (b).

takes each (sentence, table) pair as input and applies a three stage pipeline to output either the set

of cells the sentence refers to, or a null reference if there is no correspondence between the sentence

and table.

4.2.1 Stage 1: Extract Table Structure

The first stage of our pipeline analyzes the input table to extract low-level information about the (1)

spatial indices and spans, (2) data type (e.g. text, number, percentage, etc.) and (3) cell type (title,

header, data) of each table cell. It also (4) normalizes the values held in each cell to a standardized

format. Stages 2 and 3 of our pipeline use this low-level information to build the reference between

the sentence and the table.

Compute spatial indices and spans of each cell

Given an input HTML table, we analyze the <tr> tags corresponding to each table row and <td>

tags corresponding to each cell to generate row and column indices [rowindex, colindex] as well as

the rowspan and colspan for each table cell (Figure 4.3a). The resulting indices encode the spatial

position of the cells relative to one another and the spans indicate cells that span more than one

row or column.

Identify data type of each cell

We classify the data type of each cell into one of six categories:
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• Money: numeric value that represents an amount of money in some currency (e.g. “$10”).

• Percent: numeric value that represents a percentage (e.g. “10%”, “3 percent”).

• Date: time value at granularity greater than one day (e.g. “1980/01/01”, “April 2014”).

• Time: time value at granularity finer than a day (e.g. “11:12”, “11 o’clock”, “15 sec”).

• Number: numeric value that does not represent money, percent, date or time (e.g. a count,

a rank).

• Text: text that does not fall into any other category.

To obtain this data type information, we apply the 7-class model of the Stanford Named Entity

Recognizer [48] which labels each cell as either a Location, Organization, Person, Money, Percent,

Date or Time. We ignore the Location, Organization and Person labels as the later stages of our

pipeline do not need this information. We label any cells that do not fall into the Money, Percent,

Date or Time categories as either Text or a Number depending on whether the cell contains a

numeric value or it includes additional text.

Identify cell type of each cell

Tables commonly contain three types of cells (Figure 4.3b):

• Title cells are sometimes included as a part of a table and describe its overall contents.

• Header cells often appear at the top of columns (or left side of rows) and provide metadata

describing the cells in the column (or row).

• Data cells appear in all tables as they hold the specific data values reported in the table.

Classifying table headers and titles versus data cells is challenging as their formats can vary

from document to document or even table to table within a document [45]. In fact, we analyzed a

collection of example tables from a variety of PDF documents (newspaper articles, research papers,

reports, etc.) and found that they use a variety of formats to distinguish titles and headers from

data cells. In general, however, we found that for most tables the titles and headers appear in

the topmost rows and/or the leftmost columns of the table and can sometime span multiple rows

or columns. In contrast, data cells usually appear in the lower right part of the table and form a

regular grid at the finest level of granularity (i.e. the cells do not span multiple rows or columns).

Based on these observations, we classify the cell type of each cell in the table in a two step

process. First, we label any irregular rows or columns in the table – i.e. rows or columns that

contain cells spanning more than one column or row, respectively (e.g. topmost row of Figure 4.3a).

The remaining unmarked cells then form a regular grid (e.g. subgrid outlined in red in Figure 4.3a).

We assume that the topmost row and leftmost column of this regular grid are headers at the finest

level of granularity, and label all other cells within the regular grid as data cells. If the topmost

header row contains a single cell that spans all the columns, we label it a title cell (Figure 4.3b).
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Some tables do not contain row or column headers at the finest level of granularity. To properly

handle such tables, we further rely on the assumption that the data type of header cells is often

different from the data type of data cells. In many tables for example, header cells contain text

while the data cells contain numbers. Therefore, we check if the cells in the topmost row and the

leftmost column of the regular grid contain the same data type as the cells immediately below or to

the right, respectively. If the data type is the same, we re-classify the finest granularity header cells

as data cells.

Document authors sometimes leave data type information out of the data cells and only include

it in the corresponding header cell. For example, the column header “% of online men” (Figure 4.3b)

suggests that the data cells in the column are percentages, but the data cells only contain numeric

values. To identify the data type of these cells, we parse header cells using a variety of common

regular expressions (e.g. ‘% of’, ‘in $’, ‘in USD’, etc.) and then propagate the data type information

to the data cells in the corresponding columns or rows.

Normalize cell values

Figure 4.4: This table includes an order of magnitude term ‘million’ in a column header. In the
normalization step, we propagate this magnitude to the data cells in the column.

Authors sometimes put the order of magnitude of data values (e.g. billions, millions, etc.)

into a header so that the table remains concise (Figure 4.4). To identify such order of magnitude

information we again parse the header cells using common order of magnitude expressions (e.g.

‘billions’, ‘(B)’, ‘mill’, etc.) and propagate the information to the corresponding data cells.
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Figure 4.5: The phrase tree generated by the Stanford CoreNLP constituency parser for the sentence
“Of those with dial-up connections, significantly more men than women said they were interested in
high-speed connections”. Each subtree indicates a phrase and our syntactic matching algorithm finds
a match between the phrase ‘dial-up connections’ and a cell in the table of Figure 4.1(right).

4.2.2 Stage 2: Match Sentence Text to Table Cells

In the second stage, we match the text of the input sentence to a corresponding set of cells in the

input table using a combination of four different strategies using natural language processing (NLP)

techniques. The first three strategies are designed to find matches against cells that contain text,

while the fourth strategy is designed to find matches against cells that contain the other numeric

data types.

Matching text cells based on unique words

Document authors often reference a specific table cell by including words in the sentence that

uniquely appear in that cell and no other cell in the table. Consider the sentence “However, mirroring

the overall softness of the tech sector, sales of computer hardware decreased 1% versus a year-ago to

$1.6 billion.” and the table in Figure 4.4. The terms ‘computer’ and ‘hardware’ appear in only one

cell and it is likely that the sentence refers to it. We algorithmically implement this matching strategy

by removing stop words from both the sentence and the table and lemmatizing the remaining words.

Then for each cell, we store only the unique words, which do not appear in any other table cell.

Finally, we match the remaining sentence words with the unique words in each table cell to identify

a set of cells that the sentence is likely to be referencing.

Unfortunately, this simple matching strategy can produce incorrect references. Consider the

sentence “Of those who said they had virus protection on their home computers, significantly more

men than women said they were responsible for setting up the protection” and the table in Figure 4.3b.

The word ‘responsible’ matches with the cell containing “Responsible for Maintenance”, while the

words ‘virus’ and ‘protection’ match with the cell containing “Set up virus protection, if have it”.

Only the second match is relevant to the sentence. We use syntactic and semantic analyses to better

handle such cases.



CHAPTER 4. LINKING VISUALIZATIONS AND TEXT 33

Figure 4.6: The sentence “Significantly more men than women think that talking about topics is an
important reason to email with these special interest groups.” matches the cell text “Discuss issues”,
because the sentence phrase ‘talking about topics’ has the same meaning as the cell text even though
they have no words in common. Our semantic similarity matching strategy detects this match.

.

Matching based on syntactic analysis

Syntactic analysis identifies the hierarchical phrase structure of a sentence as well as the grammatical

dependencies between words. We use this syntactic structure to improve our matching algorithm.

We first apply the constituency parser in the Stanford CoreNLP toolkit [106] to the input sentence

to obtain its phrase tree (Figure 4.5). We then traverse the phrase tree breadth-first, starting at

the root, and check if the entire phrase in the current subtree (after removing stop words and

lemmatization) is uniquely contained within a single cell of the table – every word in the phrase

must appear in exactly one cell. If such a unique cell exists, we add it to the reference.

Using this approach, we can identify references where individual sentence words do not uniquely

match to a single table cell, but multi-word phrases do uniquely match. Consider the sentence

“Of those with dial-up connections, significantly more men than women said they were interested

in high-speed connections” with respect to the table in Figure 4.1(right). The words ‘dial-up’ and

‘connections’ appear separately in multiple table cells, but both words in the phrase ‘dial-up con-

nections’ appear together in only one cell. Our syntactic analysis strategy identifies the matching

cell correctly.

Matching based on semantic analysis

Sometimes, a sentence phrase and the words in a cell have the same meaning, but do not have any

words in common. Consider the sentence “Significantly more men than women think that talking

about topics is an important reason to email with these special interest groups” and the table in

Figure 4.6. The sentence phrase ‘talking about topics’ has the same meaning as the cell containing

“Discuss issues”, yet none of the words match and neither of our previous strategies would match

them. To better handle such cases, we analyze the semantic similarity (i.e. similarity in meaning)

between sentence phrases and the words in each cell.

We modify our syntactic matching strategy to compare each sub-phrase in the breadth-first

traversal of the phrase tree using a distance based on word2vec – a vector model of words that

encodes semantics. We use the pre-trained model of Mikolov et al. [113, 112] which was trained on
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parts of the Google News dataset [178] and produces vectors with 300 dimensions.

Specifically, we look up the word2vec vector for each word in the sentence phrase (after stop

word removal and lemmatization) and sum them to generate a vector vs representing the phrase.

We similarly look up and sum the vectors for each word in the cell text to generate vc, and then

compute the cosine similarity between these vectors as

cos(vvvs, vvvc) =
vvvs · vvvc

||vvvs|| · ||vvvc||
(4.1)

The word2vec model is designed so that the closer this cosine similarity is to 1, the greater the

semantic similarity between the sentence phrase and the cell text. Therefore, whenever the cosine

similarity between them is greater than a threshold τ (set empirically to 0.75), we treat them as a

semantic match. This procedure correctly handles the example in Figure 4.6 because the semantic

similarity between the sentence phrase ‘talking about topics’ and the cell text “Discuss issues” is

above our semantic matching threshold τ .

Handling cells containing numeric and time values

To match sentence text to cells containing numeric values (i.e. numbers, percents or money), we

first detect all strings in the sentence that represent numbers using the Stanford Named Entity

Recognizer [48] and convert them into numerals (e.g. ‘five million’ is converted to 5,000,000).

Document authors often refer to table cells containing numeric values by rounding their rightmost

significant digit. For instance, the sentence phrase “about 1.5 meters” may be used to refer to a

table cell containing the value 1.53 meters. In some cases, the sentence phrase may also suggest the

direction of rounding – either up or down. For example, the phrase “more than 5 million” may be

used to refer a table cell containing the value 5,700,000. Thus, whenever we encounter a numeric

value in the sentence text, we examine the surrounding words to check whether they indicate a

rounding direction (up, down or nearest) – e.g. ‘more than’ indicates the value in the sentence has

been rounded down. Then, if we do not find an exact match to the numeric value in the sentence,

we compare the rounded value. As shown in Figure 4.4, this approach allows us to match the dollar

amount in the sentence “... sales of computer hardware decreased 1% versus a year-ago to $1.6

billion” to the topmost data cell in the second column containing “$1,630”.

We have found that document authors use a variety of formats to express dates (e.g. ‘01/01/1980’

and ‘Jan 01, 1980’), time (e.g. ‘14:02’ and ‘2:02 PM’), and proportions (e.g. ‘20%’ and ‘1 in 5’). To

handle such variability, we detect dates, time and proportions within the sentence text using regular

expression templates (e.g. ‘dd/mm/yy’, ‘dd-mm-yyyy’, ‘hh:mm:ss’, etc.) and normalize them to a

standardized format so that our algorithm can correctly match equivalent expressions.
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Figure 4.7: The sentence “Equal numbers of men and women said they didn’t have time” implicitly
refers to the data cells containing the value 29. However, the matching stage of our pipeline (Stage
2) only matches the row and column headers (green, yellow, blue outlines) to the sentence text. In
Stage 3, we apply the add implicit data cells rule to correctly add in the implicit data cells (red
outlines) to the reference.

4.2.3 Stage 3: Rule-based Refinement of Matches

While many of the matches produced in Stage 2 are correct, because Stage 2 does not consider table

structure (i.e. cell type – title, header, data of each cell), it can miss matches between the sentence

and cells and it can incorrectly match the sentence to irrelevant cells. For instance, implicit references

as in Figures 4.1(right) and 4.7, occur when a sentence only describes the row and column header

cells in the text, leaving it up to the reader to identify the data cells that fall in the intersection of

the these rows and columns. Our matching algorithm in Stage 2 would miss the matches to these

data cells. The third stage of our pipeline is designed to handle such implicit references and also

remove irrelevant matches based on table structure.

Rule 1: Add implicit data cells in the intersection of headers

To properly handle implicit references, our first rule considers all of the row and column headers

returned by the matching algorithm in Stage 2 and automatically adds the data cells that fall in the

intersection of the corresponding rows and columns to the set of matched cells. Applying this rule

on the example in Figure 4.7 correctly adds the implicitly referenced data cells.

Rule 2: Remove data cells not in the intersection of headers

In some tables, the same value may appear in multiple data cells and if a sentence contains the

value, our matching algorithm (Stage 2) identifies all such cells as a match to the sentence even

though some of them may be irrelevant (Figure 4.8). But if the sentence also refers to the row and

column headers, we can use the table structure to remove the irrelevant data cell matches. Our

second rule only retains data cells that lie at the intersection of matched row and columns headers
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Figure 4.8: The sentence “In March 2005, 13% of men owned iPods or Mp3 players”, matches with
all the cells outlined in red and green after the matching stage (Stage 2) of our pipeline. However,
only the cells with green outline are correct matches. In Stage 3, we remove the cells with red outline
based on the rule that cells which do not appear in the intersection of row and column headers should
be removed.

and eliminates all other data cells.

Rule 3: Add implicit header cells if data cells match uniquely

Header cells are sometimes referenced implicitly as well. Consider the sentence “34% of women

cited cost as the reason for not using the internet” and the table in Figure 4.7. Our matching stage

(Stage 2) matches the sentence text ‘women’ with the header cell “% of online women” and the

sentence text ‘34%’ with a unique data cell “34.” But the sentence does not explicitly reference

the row header cell “Too expensive” and our semantic matching strategy does not find a matching

sentence phrase that is above its match threshold. We handle such implicit references to header cells

by automatically adding the header cells whenever a single data cell matched uniquely within the

table in Stage 2. In this case, since the single data cell “34” is uniquely matched, this rule allows us

to correctly include the row header cell “Too expensive.”

Rule 4: Remove potentially irrelevant header cells

In some cases, our matching algorithm in Stage 2 finds matches between the sentence text and row

and column header cells, but the sentence also contains numeric data values that do not appear

in the table. Consider the example sentence “58% of men and 47% of women said they know how

to upload images or other files to a website so others could see them” with respect to the table

in Figure 4.8. In Stage 2, we obtain matches to the columns “% of online men” and “% of online

women”. However, the numeric data values given in the sentence 58% and 47% do not appear in any

of the table cells. In such cases, our fourth rule removes the header cells based on the assumption
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that the sentence is unlikely to be related to the table. In this case, the rule removes “% of online

men” and “% of online women” from the reference.

4.3 Pipeline Evaluation

Figures 4.1, 4.9 and 4.12 show references generated using our automatic reference extraction pipeline.

To quantitatively evaluate the accuracy of our automatic reference pipeline, we gathered a repre-

sentative sample of (sentence, table) pairs from documents written for general audiences as well as

scientific papers written for researchers. We obtained a gold reference set for each pair and then

compared the results from our reference extraction pipeline to the gold reference set.

4.3.1 Corpus

To build the representative sample of (sentence, table) pairs, we gathered two sets of PDF documents

written for different audiences. Our Pew dataset contains 10 research reports written for general

audiences and published by Pew Research [128] in the area of public policy. Our Academic dataset

contains 6 research papers written for computer science researchers from the ACL conference [29,

54, 62, 89, 101, 171]. Since most sentences in a document are unrelated to any table within it,

we manually identified tables as well as paragraphs related to these tables from the corpus. Thus,

we could ensure that many of the sentences would reference the tables, but since we took entire

paragraphs, we could also be sure that some sentences would not reference the tables. Table 4.1

summarizes the number of tables, paragraphs and (sentence, table) pairs we extracted for each

dataset.

For comparison, we include a third dataset from Kong et al. [88] that contains (sentence, table)

pairs from 18 general audience documents including news sources like the Economist [41] and the

Guardian [61]. Together, the documents in our datasets cover a range of writing styles and table

usages.

Dataset # Docs # Tables # Paras # (sentence, table) pairs

Pew 10 26 35 127

Academic 6 11 14 72

Kong [88] 18 35 49 139

Table 4.1: Summary of the three datasets we use to evaluate our pipeline. The Pew and Kong
datasets are culled from documents written for general audiences while the Academic dataset is
from computer science research papers.
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(a) Correctly extracted reference (b) Correctly extracted reference

(c) Extracted reference containing FN errors (d) Extracted reference containing FP errors

Figure 4.9: References extracted by our automatic reference extraction pipeline. (a) Correctly
extracted reference for the sentence “Equal numbers of men and women said they didn’t have time.”
(b) Correctly extracted reference for the sentence “Men said slightly more than women that it would
be very hard for them to give up computer, the internet, and PDAs.” (c) Reference containing false
negative errors (missing cells) for the sentence “Women were significantly more likely than men to
cite many possibilities as “major reasons” they didn’t use the internet: they didn’t need it; didn’t
want it; were worried about online porn, credit card theft, and fraud; said it is too expensive; and
too complicated and hard to understand.” Because the pipeline removes the stop words ‘do’, ‘not’,
‘need’, ‘want’, and ‘it’, it misses the header rows “Don’t need it” and “Don’t want it.” (d) Reference
containing false positive errors (includes irrelevant cells) for the sentence “More men than women
said they had changed that page for their home computers at some point.” Our pipeline detects an
extra row because the word ‘computer’ appears in the sentence and in a single cell “Tried themselves
to fix computer problem.”

4.3.2 Gold Reference Set

We used an iterative process to create a gold reference set for the (sentence, table) pairs in the

Pew and Academic datasets. First, two authors from our research team independently identified

references between the (sentence, table) pairs following the reference annotation guidelines of Kong

et al. [88]. They then resolved each inconsistency by explaining their logic in producing the reference.

They then worked together to develop a consensus reference. Finally, a third author scrutinized the
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Figure 4.10: Comparison of correct, FN, FP and FPFN references produced by our complete pipeline
for each of the datasets, Pew (orange), Kong (green) and Academic (yellow) as well as the overall
combination of all three datasets (blue).

Figure 4.11: Comparison of correct, FN, FP and FPFN references produced by our complete pipeline
and a baseline method using only the unique words matching strategy combining all three datasets.

resulting references and initiated a second round of debate for each reference that he disagreed with.

After a thorough discussion between all three authors, they reached a final consensus about the set

of cells to include as the gold reference set for each sentence. For the Kong dataset, we used the

gold references provided by Kong et al. [88].

4.3.3 Pipeline Performance and Accuracy

Across all three datasets, our reference extraction pipeline took an average of 258.38 ms to process

each (sentence, table) pair on a 2.5Ghz MacBook Pro with an Intel Core i7 processor and 16GB

RAM. Stage 1 took an average of 233.89 ms per table, Stage 2 took 208.14 ms per sentence, and

Stage 3 took 0.42 ms per sentence.
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To compute the accuracy of our pipeline, we compare the results it generates to the gold refer-

ences. Specifically, for each sentence, we compare our automatically generated reference A to the

corresponding gold reference G and categorize the results as follows:

• Correct reference: our pipeline generates the exact same set of table cells as in the gold

reference, i.e. G = A.

• False negative (FN): our pipeline generates a reference that is missing some cells that are

included in the gold reference, i.e. A ⊂ G.

• False positive (FP): our pipeline generates a reference that includes extraneous cells that

are not in the gold reference, i.e. G ⊂ A.

• False positive + False negative (FPFN): our pipeline generates references with both false

negatives and false positives, i.e. G 6⊂ A and A 6⊂ G.

As shown in Figure 4.10, we find that overall (blue bars) across all three datasets, our com-

plete pipeline generates 48.8% correct references, 30.5% references that contain only FN errors,

11.2% references that contain only FP errors, and 9.5% references that contain both FN and FP

errors. Moreover, the accuracy numbers are similar across the three datasets despite the fact that

they contain different kinds of writing meant for different audiences. This result suggests that the

performance of our pipeline is somewhat independent of writing style.

For the Kong dataset, we also compare our pipeline with the crowdsourcing pipeline of Kong et

al. [88] that combines references generated by multiple workers into a single set, using clustering and

merging techniques. Their approach produces 71.2% correct references, 8.6% FN errors and 18.8%

FP errors and 1.4% FPFN errors. While their crowdsourcing pipeline produces 22.4% more correct

references than our automatic pipeline, their increase in accuracy comes at the cost of significantly

more annotation effort as they require multiple crowd workers to independently generate references

for each (sentence, table) pair.

Figure 4.11 compares the accuracy of our reference extraction pipeline to a baseline version of

our pipeline that only includes the matching on unique words strategy and does not include other

strategies in Stage 2 or the rule-based refinements of Stage 3. This comparison shows that the

complete pipeline with the syntactic and semantic matching, as well as the rule-based refinement,

provides a substantial improvement in the percentage of correct references over the baseline.

4.4 Interactive Document Reader

The goal of our interactive document reader (Figure 4.12) is to assist viewers by displaying references

between the document text and the tables as they read the document. Given a PDF document with

a set of such references, our reader underlines each sentence that references a table in red. Clicking
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Figure 4.12: Our interactive document reader contains a main panel showing the document and
a side panel showing the table most relevant to the sentences at center of the main panel. Red
underlines indicate sentences that refer to cells in a table. Clicking on such a sentence highlights it
and the table cells it refers to in yellow. Clicking on a cell highlights all sentences that refer to it.
Clicking anywhere else on the document removes the highlight.

on such a sentence highlights it and the table cells it refers to in yellow. Similarly, clicking on a cell

highlights all the sentences that refer to it. Clicking anywhere else on the document removes the

highlight.

To reduce the problem of split attention that occurs when a table is located relatively far away

in the document from the referencing text, we include a side panel that replicates the table most

relevant to the sentence at the center of the main panel. As the user scrolls through the pages in

the main panel, the most relevant table in the side panel automatically updates. The table is scaled

by default to fit in the panel, but clicking the expand button expands the table to full size. The

table is a fully interactive copy of the table in the main panel and clicking on a cell in either table

highlights the relevant sentences in the document and vice versa.

4.5 User study

We conducted a user study to compare our interactive document reader with automatic linking of

sentences to table cells to a baseline reader (similar to Adobe Reader) that does not provide such

links. We consider two main hypotheses:

H1: Despite the errors produced in our automatic reference extraction pipeline, our interactive

document reader will help users locate table cells relevant to sentences in the text more accurately

and quickly than the baseline reader.

H2: Since false positive (FP) errors can mislead readers by connecting sentences to incorrect table
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cells, they will cause more harm (lower speed and accuracy) than false negative (FN) errors which

simply force readers to manually identify the connection between sentences and table cells.

4.5.1 Study Design

We used a within-subjects study design. We sampled two groups of 12 (sentence, table) pairs

from our corpus such that the distribution of error types (correct, FN, FP, FPFN) in each group

roughly matched the overall distribution produced by our automatic reference extraction pipeline

(6 correct, 4 FN, 1 FP, 1 FPFN). We used the first group of references to generate 12 interface

condition trials and the second group to generate 12 baseline condition trials. Each trial presented a

single (sentence, table) reference pair, where the sentence was underlined in red and the paragraph

containing the sentence was shown for context. The interface condition included the interactive

reference highlighting of our interactive document reader, while the baseline condition did not include

such highlighting. On each trial, the participant had to select the table cells referenced by the

underlined sentence.

4.5.2 Study Procedure

We recruited 14 adult participants, all fluent in English, from three academic institutions. Each

participant completed 24 trials, 12 in each condition. We counterbalanced the ordering of the

conditions and randomized the ordering of trials within each condition for each participant to reduce

ordering effects. Before running the experiment, participants went through a training session where

they learned how to use both conditions and correctly complete the trial task. During the experiment,

we measured the accuracy and speed of each trial. The participants were aware that we were

measuring both time and accuracy, but we did not specifically ask them to prioritize speed or

accuracy. After completing all 24 trials, we asked the participants to rate the helpfulness of our

interface on a 5 point Likert scale and to express their opinions about the usefulness of the interface

in a free-form text response. The experiment took about 45 minutes to complete and each participant

received a $20.00 Amazon gift card for participating in the study.

4.5.3 Results

We find that our interactive reading interface significantly outperforms the baseline interface in terms

of accuracy and speed (Figure 4.13). Accuracy in the interface condition (µ = 73.1%, σ = 23.61)

was 26.4% higher than in the baseline condition (µ = 46.7%, σ = 19.67, t(13) = 7.57, p < 0.001).

On average it took participants 22.9% (11.13 seconds) less time in the interface condition (µ = 37.5s,

σ = 11.69) than in the baseline condition (µ = 48.6s, σ = 17.96, t(13) = 4.12, p < 0.05). In their

subjective assessments of helpfulness of our interface for reading documents (on a 5 point scale with

5 = very helpful), participants were generally positive (µ = 4.1, σ = 0.17). In the free-form response,
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(a) Accuracy (b) Time

Figure 4.13: Users are significantly more accurate and faster at matching sentence text to table cells
using our interactive reference highlighting interface compared to a baseline interface. These results
indicate that despite errors introduced by our reference extraction pipeline, our interface facilitates
document reading overall.

one of the participants who had the interface condition first commented that after the transition to

the baseline condition, the increased amount of effort required to complete each trial was noticeable.

Together, these results suggest that we can accept hypothesis H1.

We also find that presenting a reference containing FP errors in our interface harms accuracy and

speed much more than presenting a reference containing only FN errors (Figure 4.14). Specifically,

a one-way RM-ANOVA finds a significant effect for the types of references presented (Correct, FN –

contains only FN errors, FP+FPFN – contains at least one FP error) on accuracy (F (2, 26) = 4.89,

p < 0.05). Participants suffered a 24.5% hit in accuracy when the presented reference contained an

FP error (µ = 53.6%, σ = 36.50) compared to when the presented reference was correct (µ = 78.1%,

σ = 27.57, t(13) = 3.061, p < 0.005). Similarly with FP errors they suffered a 23.2% reduction

in accuracy compared to when the reference contained only FN errors (µ = 76.8%, σ = 28.53,

t(13) = 2.061, p < 0.05). These results suggest that FP errors are far more harmful to accuracy

than FN errors. In fact, we found that when comparing accuracy for references containing only FN

errors to correct references, there is no significant difference.

We find similar results for speed. A one-way RM-ANOVA finds a significant difference in time

required to complete the trial for the three types of references presented (F (2, 26) = 11.815, p <

0.001). Participants took 28.0 seconds longer per trial when shown references containing FP errors

(µ = 60.8, σ = 30.39) than when shown correct references (µ = 32.8, σ = 12.59, t(13) = 3.372,

p < 0.005). Similarly, they took 27.8 seconds longer when shown references with FP errors than

when shown references containing only FN errors (µ = 32.9, σ = 11.50, t(13) = 3.707, p < 0.005).

Moreover, we saw no significant drop in the speed between being shown correct references and being

shown references with FN errors. Together these accuracy and speed results suggest that we can

also accept hypothesis H2.
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(a) Accuracy (b) Time

Figure 4.14: Comparison of user accuracy in matching sentence text to table cells when our inter-
active interface presents references that are correct, that contain FN errors only and that contain
at least one FP error. We find that FP errors are significantly more harmful (reduce accuracy and
speed) than FN only errors and that the difference between presenting correct references and FN
only is not significant.

4.6 Discussion

Our main goal in developing our interactive document reader was to reduce split attention when

reading documents containing tables. Our user study finds that users can match document text to

table cells more accurately and quickly using our interface than they can using a standard baseline

document reader. This result indicates that our interface does reduce the split attention problem.

In addition to the controlled user study, we have observed a number of users as they interact

with our document reader interface. They all agreed that our interface was easy to use and that

they found the link connecting sentence text to table cells to be useful. One compared our interface

to standard document viewers saying, “The interface allows me to read the table while reading the

text. Originally this was done in the text-then-table order, but this was parallelized, making it more

efficient.” Another said, “In everyday life, if text includes tables, I would usually trust the text and

not read the table too carefully, but this interface made me take time looking back and forth.” These

observations also suggest that our interface reduces split attention and facilitates document reading.

From the user study, we also found that presenting references containing FP errors is more

harmful than presenting references containing only FN errors. We believe that this is because FP

errors can actively mislead readers by matching text sentences to irrelevant table cells. In contrast,

FN errors simply force readers to manually identify the connection between sentence text and table

cells. In the free-form text response, one of the study participants wrote “I would prefer to have

missing information [than to have extra information] because I can always fill in the gaps.” Being

misinformed (FP errors) is much worse than being uninformed (FN errors).

Another implication of this finding is that while there is some room for improvement in the

percentage of correct references produced by our pipeline, 48.8%, it may be best to focus future
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work on reducing the FP error rate of 20.7% before addressing the FN errors. Moreover, as our user

study shows, extracting references between text and tables is challenging even for people. In the

baseline condition, participants produced 46.7% correct references (σ = 19.67) on average, suggesting

that our pipeline produces correct references at rates that are comparable to human performance.



Chapter 5

Visual Explanations for Chart

Question Answering
1

Figure 5.1: Questions about a chart from a Pew research report [128]. Q1 requires a value lookup
on the data in the chart and Q3 requires a lookup on the legend. Q2 is compositional as it requires
multiple operations including value lookup and comparisons. Our automatic chart question answer-
ing pipeline answers all three questions correctly (marked in green) and gives correct explanations of
how it obtained the answer, whereas Sempre [127, 187], a state-of-the-art table question answering
system, gets all three wrong (marked in red).

People often use charts to analyze data, answer questions and explain their answers to others. In

a formative study, we find that such human-generated questions and explanations commonly refer to

visual features of charts. Based on this study, we developed an automatic chart question answering

pipeline that generates visual explanations describing how the answer was obtained. Our pipeline

1The contents of this chapter has been adapted from Kim et al. [82] (https://doi.org/10.1145/3313831.3376467).
The thesis author was the first author and a major contributor to the work.
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first extracts the data and visual encodings from an input Vega-Lite chart. Then, given a natural

language question about the chart, it transforms references to visual attributes into references to

the data. It next applies a state-of-the-art machine learning algorithm to answer the transformed

question. Finally, it uses a template-based approach to explain in natural language how the answer

is determined from the chart’s visual features. A user study finds that our pipeline-generated visual

explanations significantly outperform in transparency and are comparable in usefulness and trust to

human-generated explanations.

5.1 Introduction

Using visualizations to analyze data, answer questions, and explain how the answer was obtained, is

at the heart of many decision-making tasks. However, performing such complex analytical tasks with

visualizations is not always easy. Users often need to answer compositional questions that require

combining multiple complex operations such as retrieving a value from the chart, finding extreme

values, comparing and aggregating values, or calculating sums and differences of values. Consider

the bar chart in Figure 5.1 and the question “For which religion did the most chaplains think that

religious extremism is common?” To answer this question, users need to visually compare the values

represented by orange bars, find the longest one and then lookup the corresponding religion; in this

case it is ‘Muslims’.

As users are analyzing a chart, they regularly pose questions by referring to visual features

of the chart including the graphical marks (e.g. bars) and their data encoding visual attributes

(e.g. width) [78, 144, 146]. For example, in the course of analyzing the bar chart in Figure 5.1,

a user might ask “Which religion has the longest orange component?” This is a visual version of

our earlier question, and while it remains compositional, because it references visual features of the

chart, it is shorter and more directly suggestive of the operations users must perform to answer it.

Nevertheless, answering such compositional questions, whether they are visual or non-visual, can be

time-consuming and mentally taxing as users must perform multiple complex operations.

To obtain a better insight into how people naturally ask questions about charts, we conducted a

formative study in which we collected 629 human-generated questions for 52 real world charts along

with 748 human-generated explanations. We then categorized the questions along two orthogonal

dimensions; (1) lookup (i.e. requiring a single value retrieval), or compositional (i.e. requiring

multiple operations) and (2) visual (i.e. referencing visual chart features) or non-visual. We find

that people frequently ask compositional questions (70%), regularly ask visual questions (12%), and

that visual explanations are especially common (51%).

Can we design a tool to automatically answer such natural language questions about charts?

Automatic question answering would benefit users in several ways. It would significantly reduce

the time and mental effort by performing complex operations such as retrieval, comparison and
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aggregation (sum, average) on behalf of users. Such a tool could quickly and accurately retrieve

data values from visual attributes that are perceptually difficult to decode (e.g. size, brightness).

More importantly, introducing a natural language interface into the data analysis workflow would

lower the threshold of ability required to analyze data using charts and graphs. It could enable

people who have not been formally trained in data analysis tools and visualization literacy to get

answers to their questions. However, for users to rely on such an automated tool, it is critical that

the tool be able to transparently explain how it obtains the answers [144]. Moreover, our formative

study suggests that the most effective explanations are visual because they describe how the answer

is extracted from the visual features of the chart. Yet, no previous work on automatic question

answering for charts [26, 76, 77, 78, 133] has provided explanations for their answers.

In this chapter, we present an automatic pipeline for answering natural language questions

about charts and generating such visual explanations. Our approach builds on Sempre [127, 187], a

question-answering system for relational data tables that focuses on answering compositional, non-

visual questions. We significantly extend Sempre to answer questions about charts and also generate

corresponding visual explanations. Our pipeline works with both lookup and compositional ques-

tions as well as visual and non-visual questions. The key idea of our approach is to take advantage of

the visual data encoding structure of an input chart in Vega-Lite [139] format – a programmatic rep-

resentation that explicitly describes the encodings that map data to mark attributes – to accurately

answer visual questions and to generate the visual explanations.

We evaluate our question-answering pipeline on the corpus of 629 chart-question pairs we gath-

ered in our formative study. We find that our pipeline correctly answers 51% of all the questions

in our corpus, while Sempre alone can only answer 39% of the questions correctly, a difference of

12%. For visual questions, our improvement is even larger at 53% and even for non-visual questions,

our pipeline outperforms Sempre by 6%. Overall, these results suggest that information about the

visual encoding structure of a chart is very useful for automatic chart question answering. Finally,

we conduct a user study which finds that our pipeline-generated visual explanations are significantly

more transparent than human-generated explanations while remaining comparable in usefulness and

trust.

Our code and data are available at:

https://github.com/dhkim16/VisQA-release

5.2 Formative Study

To learn how people naturally ask questions, extract answers and explain their answers when they

encounter charts, we conducted a formative study. We gathered a corpus of charts from multiple

real-world sources, and asked crowdworkers to write natural language questions, provide answers
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Table 5.1: Counts and percentages of the types (lookup/compositional, visual/non-visual) of natural
language questions and explanations crowdworkers generated for our set of 52 charts.

and explain their answers. We then manually analyzed the resulting data to understand (1) how

often people ask lookup and compositional questions and (2) how often they refer to visual features

for the charts in their questions and explanations.

5.2.1 Gathering Charts, Questions, Answers and Explanations

Our corpus includes 52 charts, gathered from four different sources; (1) the Vega-Lite Example

Gallery [168], (2) charts in Pew Research Reports as collected by Kong et al. [88], (3) D3 charts

we found across the Web, and (4) charts constructed from tables found in the WikiTableQuestions

dataset [127]. In total, our corpus includes 47 bar charts (32 simple, 8 grouped, 7 stacked) and 5

line charts. We focus on these two chart types because, as Battle et al. [14] have shown, they are

two of the most common types of charts available on the Web.

We asked crowdworkers from Amazon Mechanical Turk to consider a single chart, write 5 natural

language questions about it, answer 10 questions about it including their own and provide explana-

tions for their answers. We then manually reviewed the responses and removed questions that were

not answerable from the chart, as well as explanations that carried no information about how the

worker obtained the answer from the chart (e.g. “I got it from the chart”). This process generated

a total of 629 questions, 866 answers and 748 explanations for the 52 charts.

5.2.2 Analysis

We analyzed the crowdworker responses to differentiate compositional questions from lookup ques-

tions as well as visual versus non-visual questions and explanations (Table 5.1).

We find that 70% of the questions are compositional, while the remaining 30% are lookups.

Compositional questions often ask about extrema (38%), differences between two data values (22%),

and the sum of multiple values (7%). An additional 12% of the compositional questions require

performing multiple compositional operations to arrive at the answer (e.g. difference of the maximum

and the minimum). People also regularly ask visual questions (12%) that refer to visual features

of the chart. Visual questions tend to be lookups (68%) while non-visual questions tend to be

compositional (75%).
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Figure 5.2: Our question answering pipeline for charts operates in three stages. In Stage 1, it
extracts visual encodings and the data from the chart and then restructures the data table. In Stage
2, it transforms the input question, replacing any visual references to chart elements with non-
visual references to data. Then, it passes the restructured data table and the transformed question
to Sempre [127, 187], a state-of-the-art table question answering system which generates the text
answer. Finally, in Stage 3, it generates a natuaral language explanation describing how the answer
was generated from the chart.

Most importantly, we find that people frequently provide visual explanations (51%), which de-

scribe the process of extracting an answer from the visual features of a chart. Consider Q2 in

Figure 5.1 where the correct answer is ’Muslims’. A person might visually explain how they got

the answer by reporting “Muslims have the longest orange bar in the chart.” In contrast, a non-

visual explanation such as “Muslims are about 57% Common, more than any other Religion,” only

refers to the data and does not describe the process of extracting the data from the visual features

of the chart. Thus, it is less thorough and this lack of completeness may explain why non-visual

explanations are slightly less common than visual explanations.

5.2.3 Additional Collection of Visual Questions

To better understand how visual questions are posed we also collected a set of 277 visual questions

about charts from our collegues. We analyzed these questions to to identify the lexical and the syn-

tactic structures that people typically use to refer to marks and visual attributes in visual questions.

We use the results of this analysis for converting visual questions to non-visual questions in Stage 2

of our pipeline.

5.3 Method

Our question answering system takes a chart and a natural language question as input and outputs

the answer to the question along with an explanation (Figure 5.2). Our approach is to adapt

Sempre [127, 187], a question answering algorithm that works with relational data tables instead of

charts. In Stage 1 of our pipeline, we extract the visual encodings that map data to the attributes of

visual marks (e.g. height of a bar mark, color of lines, etc.). We also extract the data itself from the
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input chart. In Stage 2, we use the extracted encodings to transform the input question, replacing

all references to visual marks and their attributes with references to data fields and data values.

This transformation converts a visual question into a purely non-visual question. Next, we input

the unfolded table and the transformed, non-visual question into Sempre to generate the answer.

Sempre converts the input natural language question into a logical query called a lambda expression,

and then executes the query on the data table to generate the answer. Finally, in Stage 3, we convert

the lambda expression from Sempre into a visual explanation for the answer, using template-based

translation.

5.3.1 Stage 1: Extract Data Table and Encodings

Figure 5.3: Vega-Lite specification for the chart in Figure 5.1. This specification includes a block of
data “transforms” (orange keyword text) that filter the data to specific years and questions. The
“mark” (blue keyword) is specified as ‘bar’, and the visual “encodings” (pink keyword) for x-position,
y-position, and color of the marks are given explicitly.

(a) Flat data table (b) Unfolded data table

Figure 5.4: (a) Data extracted from the chart in Figure 5.1 is initially a flat relational data table.
Each row represents one mark in the chart. (b) We unfold the table by choosing the ‘Response’
column as a pivot, turning each of its data values into column headers and then re-aligning the data
in the other columns. In (a), each ‘Religion’ and ‘Response’ value appears multiple times but only
once in (b) reducing the size of the table by almost a factor of two. Moreover, in (b), looking up a
specific (‘Religion’, ‘Response’ ) pair such as (‘Hindus’, ‘Not common’ ) requires looking for the value
at the intersection of the pair rather than searching through all the rows corresponding to Hindus
as in (a).
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A chart is typically constructed by encoding (or mapping) the data to some visual attributes

(e.g. position, area, color) of graphical marks (e.g. circles, rectangles) [117]. Vega-Lite [139] is a

chart specification language that explicitly describes how input data should be transformed (e.g.

aggregating it, re-scaling it) to make it suitable for visualization, and how the transformed data

should be encoded using visual attributes of the marks (Figure 5.3).

In Stage 1 of our pipeline, we convert an input chart into a Vega-Lite specification and then

extract encodings as well as the transformed data. Finally, we unfold the extracted data into a data

table. We first describe how our extraction process works for a Vega-Lite chart and then explain

how we convert other types of input charts into the Vega-Lite format.

Extraction from Vega-Lite Charts

Extract encodings. Given a Vega-Lite chart specification as in Figure 5.3, we can directly extract

the encodings by looking for encoding keyword. In this example, the y-position attribute of a bar

mark encodes a nominal data field named ‘Religion’, while the length attribute of the bar encodes

a quantitative data field named ‘Percentage’. Similarly, the color attribute encodes a nominal data

field named ‘Response’ that takes the value � #EE8426 for the response ‘Common’ or the value �

#5376A7 for the response ‘Not common’.

Extract data. To extract the data from the chart, we first run the Vega-Lite interpreter and apply

all data transformations in the chart specification. We then capture the transformed data from the

Vega-Lite interpreter just before it is rendered into a chart. Specifically, we instrument the chart

specification to write out the data immediately after the last transformation. The resulting data

is in the form of a flat relational table where each row represents a single mark in the chart, or

equivalently a single data tuple (Figure 5.4a).

Unfold data table. Table question answering systems like Sempre are trained using human readable

tables which are often structured in an unfolded format in which a data tuple is comprised of a row

header, a column header and the data value at their intersection (Figure 5.4b). Human readers

typically prefer such unfolded tables to the corresponding flat relational tables because they are

more compact and thereby reduce the cognitive effort required to retrieve information.

Sempre has been trained on a large set of tables from the WikiTableQuestions [127] dataset

where manual inspection shows that many of the tables are unfolded. Therefore, we unfold our flat

relational data tables into a form that is closer to Sempre’s training data. Specifically, we implement

Raman and Hellerstein’s [132] unfold operation as follows. We first check that the extracted data

table has a pivot column whose data values will be transformed into column headers. The pivot

column must contain data values that repeat with the same frequency greater than one. In our

example, the ‘Religion’ column repeats each religion with a frequency of 2, while the ‘Response’

column repeats each response with a frequency of 10 – each response appears once for each of the
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10 religions in the dataset. We choose the column with the largest frequency as the pivot and re-

align the data values in the other columns to form the unfolded table (Figure 5.4b). The resulting

unfolded data table is passed as input to Sempre.

Converting Charts into Vega-Lite

While our extraction procedures are designed for charts specified using Vega-Lite, we can handle

other forms of charts by converting them into the Vega-Lite format. For visualizations created using

D3.js [36], we apply the D3 deconstructor of Harper and Agrawala [63, 64] to automatically convert

them to Vega-Lite. The most prevalent representation of charts today is a bitmap. For such chart

images, we first use ReVision [140] to extract the data and the marks and then manually add the

visual encodings to convert the chart into a complete Vega-Lite specification. We leave it to future

work to incorporate alternate methods for extracting data, marks and visual encodings [30, 129]

from bitmaps of charts.

5.3.2 Stage 2: Visual to Non-Visual Question Conversion

In Stage 2, we transform an input question which may refer to visual aspects of the chart such as its

marks and visual attributes, into a non-visual question that only refers to the data depicted in the

chart. For example, consider the chart in Figure 5.1 and visual question Q2, “Which religion has

the longest orange component?” Our goal is to convert this visual question into the corresponding

non-visual question, “Which religion has the most Percentage of Common Response data?”

The visual version of the question uses the word ‘component’ to refer to marks (bar segments)

and the word ‘orange’ to refer to a value (orange) of the visual attribute (color) of the marks. The

word ‘longest’ refers to performing an argmax operation on the visual attribute (length) over the

marks, and we call such operations on visual attributes visual operations. Our approach identifies

references to marks, visual attributes and visual operations in the question and then converts them to

references to the data and operations on the data to build the the non-visual question in a sequence

of 6 steps (Figure 5.5).

Step 1: Mark detection. The first step is to detect all words referring to graphical marks in the

chart. Our approach is to check whether each word in the question appears in a list of mark words

that we manually built in a one-time pre-process from our analysis of the additional set of visual

questions we collected in the formative study (Figure 5.6 cyan). For instance, one may refer to a

bar in a stacked bar chart as a ‘component’, ‘portion’ or ‘segment’ and we include these words in

the list for bar marks. Thus for the question “Which religion has the longest orange component?”,

we detect the word ‘component’, as referring to the bar marks in the stacked bar chart (Figure 5.5).

Step 2: Dependency parsing. In the second step, we identify a set of words describing each

graphical mark based on the grammatical structure of the question. We start by applying the
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Figure 5.5: Six steps used to convert the visual question (Q2 in Figure 5.1) into a non-visual
question. The system detects ‘component’ as a reference to the bar marks, it detects ‘orange’ as a
visual attribute word, and it detects ‘longest’ as a visual operation word. It rewrites these words
and outputs the rewritten non-visual question.

Stanford CoreNLP dependency parser [75, 106] to obtain a parse tree that encodes phrase-level

dependency structure. For instance, in the dependency tree for our example question (Figure 5.7),

the word ‘orange’ is an adjectival modifier amod for mark word ‘component’.

To obtain the words describing each mark, we find the tree node for each mark word in the

question and traverse outwards following edges to its parents and children in breadth first order. We

retain only the words corresponding to the following set of dependency labels: acl, amod, compound,

conj, dep, dobj, nmod, and nsubj. We obtained this list by analyzing the complete set of dependency

labels [166] along with our sample of additional visual questions collected in the formative study

and noting that these labels best captured the visually descriptive words for each mark.

For our example (Figure 5.7), we traverse the tree starting at the mark word ‘component’ and

add the amod words ‘longest’ and ‘orange’ to the list of descriptive words, but we do not add the

det word ‘the’. We would also traverse up the tree adding the parent word ‘has’ with the relation

dobj and then down through its children adding the nsubj word ‘religion’, but not the det word

‘Which’. Thus, for the mark word ’component’ we obtain the following set of descriptive words

‘religion’, ‘has’, ‘longest’, and ‘orange’ as shown in Figure 5.5.

Questions often use color words to refer to marks without including a mark word. Thus, if the

question contains a color word, we always add it to the list of descriptive words.

Step 3: Visual attribute detection. We next identify all the visual attribute words in the list of

descriptive words. Our approach is similar to the approach in step 1 for mark detection.

As a one-time pre-process, we built a list of attribute words for each mark type by analyzing our

sample of example visual questions. In this analysis, we noticed that the same word can refer to a

different visual attribute depending on the mark type (e.g., the word ‘height’ refers to the ‘length’

of a bar in a vertical bar chart whereas it refers to the ‘y-position’ of a point in a line chart), so we

created a separate list of visual attribute words for each mark type. The field visual attribute in

Figure 5.6 (labeled in orange) shows an example of the alternatives word list for visual attributes of
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Figure 5.6: Word lists used in our pipeline for marks of type ’bar’. The list of alternative words
for referring to ’bar’ marks (cyan). The list of alternative words to refer to visual attributes of
’bar’ marks (orange). The list of visual operations and the alternative natural language word (e.g.
rightmost, bottommost, wider, narrower) corresponding to each one (green) In this case the list
also includes a visual attribute (e.g. xLocation, height) that the visual operation applies to. The
operations are given at the top level and the visual attributes they operate on are given in the second
level. The word lists for line charts are included in Chapter A.

bar marks.

We next filter the complete visual attributes list to just the ones that appear in the visual

encodings we extracted from our chart in Stage 1. Then to identify which words in our descriptive

words list refer to visual attributes, we iterate over each descriptive word and find the closest match

in our filtered visual attributes list. Since there are lots of ways to describe visual attributes, we use a

word2vec-based synonym finding approach to detect a match. Specifically, for each descriptive word

and each filtered visual attribute word, we lookup the 300-dimensional word2vec vector generated

by the pre-trained model of Mikolov et al. [112, 113] trained on the Google News dataset [178]. We

then compute the cosine similarity between their word2vec vectors and accept the best similarity

match above a threshold τ (empirically set to 0.75).

Questions sometimes contain descriptive words referring to a color (e.g. ’orange’, ’red’, ’blue’).

Such color words are generally ambiguous as the word ’red’ may refer to a range of different RGB

values. Thus, whenever we encounter a descriptive color word, we first lookup the descriptive word in

the text color names of the X11 color list [181] to obtain the corresponding RGB hex code. We then

consider any encoding involving the color attribute, and examine all the RGB values the attribute

takes within the chart. Finally, we replace the color word in the question with the RGB hex code

that appears in the chart and is closest (in Euclidean RGB distance) to the X11 RGB hex code.

In our example, the descriptive word ‘orange’ yields the X11 hex code � #FFA500 and of the two
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Figure 5.7: The dependency tree generated by the Stanford CoreNLP dependency parser for the
question “Which religion has the longest orange component?”. Words comprising a noun phrase
have the same parent noun in the tree and the tree provides a dependency relationship label for
each edge (e.g. amod is an adjectival modifier, det is a determiner, nsubj is a nominal subject). In
this case, the word for the visual attribute ‘orange’ (orange) and the word for the visual operation
‘longest’ (green) are adjectival modifiers (amod) of the mark word ‘component’ (cyan)

colors � #EE8426 and � #5376A7 that appear in the chart (Figure 5.1), it is closest to the former.

Therefore, we replace the word ’orange’ with � #EE8426 as shown in Figure 5.5.

Step 4: Visual operation detection. In step 4, we identify all the visual operation words in our

remaining list of descriptive words. As in steps 1 and 3, we performed a one-time pre-process to build

lists of alternative visual operation words (e.g. longest, narrowest, etc.). Each such visual operation

word (e.g. tallest) implies performing an operation (e.g. argmax) on a specific visual attribute

such as the height of a mark. Therefore, our visual operations word list maintains an (operation,

attribute) pair for each visual operation word (Figure 5.6 green). To match a descriptive word to

the visual operation words, we use the word2vec approach we used in step 3. In our example, we

detect ‘longest’ as a visual operation word and interpret it as the visual operation (argmax, width)

as shown in Figure 5.5.

Note that we identify simple questions about the encoding (e.g. “What is blue depicting?”) by

checking if the input question only refers to one visual feature or attribute of the chart and does not

refer to a mark, data or visual operation. In such cases, we directly use the encodings we identified

in Stage 1 to answer the question (e.g. “Not Common”), bypassing the rest of Stage 2.

Step 5: Apply encodings. In step 5, we use the encodings extracted in Stage 1 to replace the

words corresponding to visual attributes and visual operations with words corresponding to data

fields and data values. Specifically, we replace visual attribute words to the corresponding data

field it encodes as given in the encoding. For specific visual attribute values like the orange color

� #EE8426 we extracted in the step 3, we replace the attribute value with the corresponding data

values – in this case the response ‘Common’. For visual operation words, we lookup the corresponding

(operation, attribute) pair and replace the visual attribute with the corresponding data field based on

the corresponding encoding. For example, given the visual operation word ‘longest’, we lookup the

(argmax, width) pair, then find the encoding for the width attribute in the Vega-Lite specification and
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Figure 5.8: Steps for generating an explanation from the lambda expression given by Sempre for the
input question “Which religion has the longest orange component?” (Q2 in Figure 5.1). The system
first converts the lambda expression generated by Sempre into a non-visual natural explanation. It
then converts the non-visual explanation to a visual explanation by applying the visual encodings.

finally replace the attribute width with the corresponding data field ‘Percentage’ from the encoding.

Thus, we interpret the operation argmax as acting on the data field ‘Percentage’ (Figure 5.5).

Step 6: Natural language conversion. In the final step, we convert our question into a non-

visual natural language question suitable for input into Sempre, by rewriting words representing

marks, visual attributes and visual operations using natural language equivalents. Because a mark

represents a piece of data, we rewrite all mark words with the generic noun ‘data’. In Step 5,

we converted the the visual attribute words into a corresponding data field or data value and we

consider these as already in natural language. In our example, ‘orange’ has already been converted

into the data value ‘Common’. If as in this case the attribute word refers to a data value, we

append the corresponding data field name to indicate the context in which the data value should

be interpreted – in this case we append the data field name ’Response’ to the data value ’Common’.

Finally, if the attribute word is used as a noun, we add the word ‘value’ to force the resulting

conversion into a noun. For the visual operation words, we replace the operation word pairs e.g.

(argmax, ‘Percentage’ ) with the natural language equivalent of the operation while removing pair

notation e.g. ’most Percentage’. Thus, the input question “Which religion has the longest orange

component?” is rewritten as “Which religion has the most Percentage Common Response data?”

While the non-visual question is not completely fluent, together with our unfolded data table it

contains enough information for Sempre to answer it correctly: “Muslims”.

5.3.3 Stage 3: Explanation Generation

In Stage 3, our pipeline generates a visual explanation describing how the answer was extracted

from the chart’s visual features. Our approach takes the logical query lambda expression Sempre

builds to answer the question and uses template-based natural language generation to produce the

explanation.

Consider the example question “Which religion has the longest orange component?” (Q2 in
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Figure 5.9: Rules for converting operations in lambda expressions to natural language for some of
the common operations. First column shows the name of the rule, the second column shows the
labmda expression and the third column shows the corresponding natural language expression. We
include more rules in Chapter A.

Figure 5.1). In Stage 2, we generate the corresponding non-visual question “Which religion has the

most Percentage Common Response data?”. Sempre then converts this question into the lambda

expression

argmax(R[Religion].Row,R[λx[R[Number].R[Common].Religion.x]]),

which it executes on the unfolded table we generated in Stage 1 to produce the correct answer

‘Muslims’. Our goal in Stage 3 is to convert this lambda expression to the natural language visual

explanation “I computed the ‘Religion’ of the longest orange bar.” We use a 5 step pipeline to

generate the explanation (Figure 5.8).

For questions about the encoding that we detected in step 4 of Stage 2 (e.g. “What is blue

depicting?”), we directly generate the explanation using the template “I looked up what [encoding]

represents by looking at the [label on the x-axis / label on the y-axis / legend],” based on whether

the encoding is specified by the x-axis, the y-axis or the legend. We do not process such questions

through the steps in this stage.

Step 1: Natural language conversion. As presented by Liang [99], lambda expressions include a

limited set of operations and generation rules. Thus, we build a small set of rules to convert lambda

expression to natural language (a subset of our rules is shown in Figure 5.9). For our example, our

pipeline applies the argmax, type, lookup, and row rules to convert the input lambda expression to

“‘Religion’ of data with the greatest ‘Common’ of ‘Religion’.”

Step 2: Implicit field recovery. Sometimes, a field name becomes implicit during the table

unfolding in Stage 1, and we maintain the field name as an auxiliary annotation to the table. For

instance, during the unfolding process in Figure 5.4, we keep the field name ‘Percentage’ as auxiliary

annotation on each of the cells in the ’Common’ and ’Not common’ columns. In this step we add this

implicit annotation to the reference to the value ‘Common’ of the pivoted field in the explanation,

resulting in “‘Religion’ of data with the greatest ‘Percentage’ of ‘Common’ of ‘Religion’.”
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Step 3: Redundancy Cleanup. Our pipline next removes any redundant information using a

series of regex rules. In our explanation, we see that the information about ‘Religion’ is repeated

twice at the beginning and end of the expression. Moreover, “‘Religion’ of data” does not carry more

information than just ‘Religion’. Both of these issues make the explanation difficult to understand.

The cleanup step removes these extraneous words and yields “‘Religion’ with the greatest ‘Percentage’

of ‘Common’.” We include the specific regex rules in Chapter A.

Step 4: Sentence Completion. Next, we generate a non-visual explanation by adding the pro-

noun ‘I’ and a verb that describes the last operation performed by the system. For the verb, we use

‘looked up’ for lookup operations, ‘counted’ for counting operations, and ‘computed’ for all other

operations. In our example, we add “I looked up” to the beginning of the explanation to complete

a non-visual explanation.

Step 5: Encoding application. To make the non-visual explanations visual, we apply the visual

encodings obtained from Stage 1. For references to values of fields that are encoded as colors, we

convert them to color words directly. For references to data fields encoded as other visual features,

we check the surrounding words to see if there is an operation performed on the visual attribute,

and convert it to a visual attribute word or a visual operation word using the word lists we used

in Stage 2 (Figure 5.6). We add a mark word and position the converted visual words so that

they modify the mark word. In our example, we convert the value ‘Common’ to the color ‘orange’.

For the reference to the field ‘Percentage’, we use the neighboring word ‘greatest’ and the visual

encodings to recognize that this is an operation argmax on the visual attribute width, and use the

visual operations word list to convert this to the visual operation word ‘longest’. Rearranging these

words so that they modify the mark word ‘bar’ yields “ I looked up ‘Religion’ of the longest orange

bar.” Details about choice of color words and word rearrangements are in Chapter A.

5.4 Results

As shown in Figure 5.10, we find that across all 629 questions in our corpus, our pipeline answers

51% correctly. As a baseline, we compare this result to using Sempre with the flat relational tables

initially extracted in Stage 1 in place of the charts and find that it only answers 39% of the questions

correctly. Our pipeline greatly outperforms Sempre on visual questions with improvements of 53%

for all visual questions, 74% on visual lookup questions and 8% on visual compositional questions.

We find that for even for non-visual questions, our system outperforms Sempre, by 6% overall, 19%

on non-visual lookup questions and 2% on non-visual compositional questions.

Figure 5.11 compares the accuracy of our complete pipeline to a pipeline in which we only retain

Stage 1 (and eliminate Stage 2—visual to non-visual conversion) and to a pipeline in which we

only retain Stage 2 (more specifically, we include data and encoding extraction from Stage 1 but

eliminate data table unfolding). Although both stages contribute significantly to the overall success
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Figure 5.10: Accuracy of our pipeline (blue) compared to a baseline version of Sempre (orange) for
questions of each type (visual/non-visual and lookup/compositional).

Figure 5.11: Accuracy of our complete pipeline (blue) compared to the pipeline with the data table
unfolding of Stage 1 only (purple) and the question transformation of Stage 2 only (green).

of our pipeline, we see a major improvement in answering visual questions from Stage 2, which is not

surprising as Stage 2 is responsible for converting visual questions into the non-visual form necessary

for Sempre.

Figure 5.12 shows a variety of charts and questions with answers and explanations generated by

our pipeline, as well as the answers generated by the baseline version of Sempre. We see that our

system generates correct answers and explanations for many questions that Sempre cannot answer

correctly. In particular, Stage 2 of our pipeline handles visual features and allows our pipeline to

correctly answers visual questions (Q5, Q7, Q9, Q11, Q13, Q14). It even correctly answers non-

visual questions both lookup (Q1, Q3, Q17) and compositional (Q2, Q4, Q8, Q10, Q19). However,

our pipeline sometimes outputs a wrong answer for a question Sempre gets correct, as in Q18. In this

case the error is due to a change in table structure from table unfolding in Stage 1 of our pipeline.
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Figure 5.12: Sample questions from our corpus with answers generated by our pipeline as well as a
baseline version of Sempre. Answers in green are correct and answers in red are incorrect. If neither
of pipeline generated a correct answer, we also report the correct answer as in Q20, Q22, and Q24.
We encourage readers to zoom in to the figure to read the text.
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Table 5.2: Results from the user study (each result is represented as avg(±stdev)). We see that for
most of the measures, the visual explanations generated by our system achieves the best.

Nevertheless, analyzing the wrong answers produced by our system, we find that 92% are due to

Sempre, and 5% are due to incorrect conversions of visual questions. The remaining 4% are because

of changes in the table structure from table unfolding. Further analyzing the Sempre errors, 12%

are caused by Sempre not including the operation involved in the question. For example, Sempre

does not include operations with binary output, making it unable to answer Y/N questions, which

accounts for 1.5% of all the questions. We refer to the analysis in the original papers [127, 187] for

more details about errors by Sempre.

Our system gets the correct answer for Q16, but from the explanation, we see that it counted the

number of lines corresponding to the countries that appeared in the question (i.e. Brazil and Russia)

instead of counting the number of flips in the GDP ranking of the two countries; it accidentally got

the answer correct. On the other hand, since Sempre does not give explanations, it is unclear how

many of the correct answers it gives are obtained through an incorrect process because the model is

opaque. Even for questions our system gets wrong (Q18, Q20, Q22, Q24), we see that our system

transparently explains how it arrived at the wrong answer.

5.5 User Study

To see how the visual explanations generated by our pipeline do on the measures of transparency,

trust, and usefulness, we conducted a user study with four different conditions: (1) the no-explanation

condition in which we only show the answer to a question, (2) the human explanation condition in

which we show the answers and explanations generated by humans from our formative study, (3)

the non-visual explanation condition in which we show the answers and the non-visual explanations

generated by our pipeline (at the end of step 4 of Stage 3), and (4) the visual-explanation condition

in which we show the answers and visual explanations generated by our pipeline. We consider three

hypotheses:

H1: Users will find the visual explanation condition more transparent and trustworthy than the

no-explanation condition.

H2: Users will find the visual explanation condition better than or at least as good as human

explanation condition based on transparency, trust, and usefulness.

H3: Users will find the visual explanation condition better than the non-visual explanation condition
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based on transparency, trust, and usefulness.

5.5.1 Study Design

We designed a within-subjects study with sixteen participants, all fluent in English. To set up the

study we gathered 20 unique charts-question pairs from our corpus, and divided them into four groups

of five. We counterbalanced the mapping between the four conditions and the four chart-question

groups. We then ran the study in two stages. In the first stage, we randomly shuffled the questions.

Along with the chart and the question, we showed the participants answers and explanations (if any)

of the condition the question was mapped to. For each question, the participants first determined

whether the presented answer was correct, and then rated the usefulness of the explanation on a

5-point Likert scale. We timed how long it took them to determine correctness. In the second stage,

we showed each group of questions in a counterbalanced order and asked the participants to rate

the transparency and the trustworthiness of the condition on a 5-point Likert scale. Afterwards, we

collected free form responses about what the participants considered relevant to the transparency,

trustworthiness, and usefulness. The study took about 30 minutes and each participant received a

$15.00 Amazon gift card.

5.5.2 Results and Discussion

Assessing H1. Figure 5.2 shows the results of the study. We find that the visual explanations

generated by our pipeline significantly increased the transparency of the pipeline compared to the no-

explanation condition (Mann-Whitney U = 245.5, p < 0.001). Trust towards the visual explanation

condition was higher than the no-explanation condition, but the difference was not significant (U =

149.0, p = 0.21).

Assessing H2. Participants also found the visual explanations generated by our pipeline sig-

nificantly more transparent than the human-generated explanations (U = 178.0, p < 0.05). We

hypothesize that this result is due to the systematic way our pipeline generates the explanations, as

one participant put it, “I like that in some system the explanation is more consistent than others. It

guarantees me that it will provide certain information.” Finally, we saw that the trust towards visual

explanations generated by our pipeline is very close to that towards human-generated explanations

(U = 130.5, p = 0.46).

Assessing H3. When we compare between the visual explanations to non-visual explanations

generated by our pipeline, we find that the measures of transparency, trust, and usefulness are all

higher for the visual explanations, but none of the improvements are significant (U = 153.5, p = 0.16;

U = 143.5, p = 0.27; U = 3356.5, p = 0.29, respectively).

In the free form response, most participants (12 of 16) reported explanations as relevant to trans-

parency (e.g., “I appreciated being able to see from the explanations what caused the system to make

errors. Providing no explanation at all made the system seem like a complete black box.”). For trust,
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participants reported the accuracy of the answer (10 of 16) and whether the explanation matches

the answer (4 of 16) as relevant. Finally, for usefulness, participants reported that explanations are

more useful if they refer to visual features (7 of 16).

In sum, we find the visual explanations generated by our system are significantly more transparent

than human-generated explanations and are comparable in usefulness and trust.

Accuracy and Time. We also measured the accuracy and speed with which participants could

confirm the correctness of answers with and without explanations. While these initial measurements

show improvements in accuracy for and speed when people have access to explanations, the relatively

small differences combined with large variance in timing, suggest that further study is needed to

understand the causes of these improvements. We provide more details about these measurements

in Chapter A.



Chapter 6

Limitations and Future Work
1

Although this thesis makes an important step towards extending our knowledge about the relation-

ship between text and visualizations, there are several limitations that can be addressed in future

work.

6.1 Generalization of Findings and Algorithms

In this thesis, we have focused on certain types of text and visualizations that best represent the

variables of interest while controlling the variations in less relevant variables. While we believe that

our findings are generalizable, future work can confirm this and extend our algorithms to other types

of text and visualizations.

In Chapter 3, we explored how readers take away information when presented with univariate

line charts and captions. Visualizations have prominent features (e.g., extrema in bar charts, outliers

in scatterplots) and less prominent features (e.g., a point in a cluster in scatterplots) and we expect

similar findings would hold in general. We leave it to future work to confirm this intuition.

In addition, we used a template-based approach for generating captions to minimize the effect

of the variation of natural language and to keep the experiment size reasonable. Simultaneously, we

carefully varied the visual feature described in the caption and the presence of external information

to best understand how people read captions and charts together to form their takeaways. Future

work could study captions with various natural language expressions and different ways of emphasis.

It would be useful to understand whether the relationship between multiple features in a caption

(e.g., a simple list - “There were major dips in employment in 2008 and 2020.” or a comparison

- “The dip in 2020 was greater than the dip in 2008.”) has an effect on what readers take away.

Studying how our findings generalize to other types of external information (e.g., extrapolation,

1The contents of this chapter has been adapted from the thesis authors works presented in the previous chapters [82,
83, 84].
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breakdown into subcategories) would be an interesting direction to pursue.

In Chapter 4, we confirmed that our reference extraction pipeline handles tables and any chart

with tabular data [88] and generated a document reader for tables. Similar interfaces showing

references between some basic chart types and text [170] and proof statements and text [34] suggest

the benefits of reading interfaces that link other types of visualizations and text. The task of reference

extraction that could support these interfaces still remain mostly an open problem for many types

of visualizations other than some basic chart types [92, 94].

Furthermore, while our work provides evidence that our pipeline generalizes across different

document styles, a larger corpus containing additional types of documents (e.g. textbooks, news

articles, etc.) would allow us to verify the generalizability of our pipeline across document types.

Generating labeled data from the larger corpus would also pave the way for developing modern

machine-learning based methods for this problem.

In Chapter 5, we mainly focused on generating visual explanations about questions about charts

with tabular underlying data to leverage Sempre [127, 187]. We believe that the principles of

transparency and trust apply to question answering on all types of visualizations (e.g., diagrams [80],

geometric figures [141, 142]) and future work can seek ways to best explain how a system obtained

an answer based on a visualization.

6.2 Implementation and Improvements of Algorithms

In this thesis, we have introduced design guidelines as well as algorithms for helping people see the

connections between visualizations and text. Future work can implement tools to help follow the

guidelines and improve the algorithms we present in this thesis.

First, we would like to explore how the work in Chapter 3 can provide interesting implications

for both chart and caption design to help the author effectively convey a specific point of view.

Enhancements to visualization authoring tools could suggest chart design alternatives given a feature

that the author would like to emphasize. Specifically, the system could go further by emphasizing

features in the chart according to the main message the author wants to convey by automatically

adding annotations to the chart, adding highlights, and adjusting levels of detail so that the chart

and the caption deliver a concerted message. This will require formulating a high-level language

specification that the authors can use to communicate to the system about their intents or a natural

language processing module that can infer the authors’ intents based on the captions they write.

Coordinating interaction between the chart and the caption such that hovering over the text in

the caption would highlight the corresponding visual feature in the chart and vice-versa, is another

interesting direction to pursue to help the reader. The resulting system would be a significant

extension of the interactive document reader presented by Kong et al. [88] and Chapter 4. On the

captioning side, a system could classify basic captions, captions about high-prominence features,
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and captions about low-prominence features. Based on the classification, the system could suggest

external information to further emphasize the information presented.

In Chapter 4, we verified that readers are better off with our interactive document reader although

the accuracy was only 48.8%. This accuracy shows that there is much room for improvement. While

our work focuses on references within a single sentence, anaphora resolution techniques [115] and/or a

document-level discourse parser [74] could be used to identify references that span multiple sentences.

Some references also require external knowledge (e.g. table headers list the countries in the world

and the text refers to ‘Asian countries’). Knowledge bases such as DBPedia [9], Freebase [18] or

Wolfram Alpha [177] could be used to resolve such references. References sometimes include clauses

such as ‘all but ...’ (exclusion) or ‘the second most common’ (ranking) to indicate specific table

cells. Applying compositional semantic parsing [127] may be one approach for resolving references

that involve such logical operations.

Our question answering system in Chapter 5 achieves an accuracy of 51% and can be improved

further. For example, people refer to visual features of a chart using a variety of words. Our rule-

based approach sometimes fails to detect synonyms for these features. A supervised method that

learns to detect such visual references and convert visual questions to non-visual questions could

provide a more generalizable model. We have also found classes of questions that our system cannot

handle, some because Sempre [127, 187] cannot handle them (e.g., yes/no questions), and some

compositional questions about visual encodings (e.g., Q22 of Figure 5.12). We hope to extend our

pipeline to handle such questions.

Moreover, while our template-based approach generates explanations that can convey how our

pipeline obtained an answer, the resulting explanation may lack fluency and offer little variations in

style. Applying data-driven neural models for natural language generation [108] may help address

such limitations. Moreover, as Kong et al. [88] and Chapter 4 have suggested, highlighting parts of

the charts relevant to the explanations might also improve their effectiveness.



Chapter 7

Conclusion
1

Visualizations and text oftentimes accompany each other. In this thesis, we noted that understand-

ing the relationship between the two representations is challenging. Based on the observation, we

introduced tools and design principles that can guide people towards the intended messages by

making the relationship clear.

In Chapter 3, we examine what readers take away from both a chart and its caption. Our results

suggest that when the caption mentions visual features of differing prominence levels, the takeaways

differ. When the caption mentions a specific feature, the takeaways also tend to mention that feature.

We also observed that when a caption mentions a visually prominent feature, the takeaways more

consistently mention that feature. On the other hand, when the caption mentions a less prominent

feature, the readers’ takeaways are more likely to mention the most prominent prominence features

than the feature described in the caption. We also find that including external information in the

caption makes the readers more likely to form their takeaways based on the feature described in the

caption. From the results of our study, we propose guidelines to better design charts and captions

together; using visual cues and alternative chart representations, visual features can be made more

prominent and be further emphasized by their descriptions in the caption. Design implications from

this work provide opportunities for the authoring of chart and caption pairs in visual analysis tools

to effectively convey a specific point of view to the reader.

Then, in Chapter 4, we have presented a fully automatic pipeline for extracting references between

the text and tables in a document. Our pipeline includes three main stages that analyze the structure

of the table, apply natural language processing techniques to match sentence text to table cells and

refine the matches using the table structure. While our results are not perfectly accurate, the

majority of errors are due to false negatives (missing cells), which we have found to be less harmful

than false positives (misleading cells) in the user study. We believe that this pipeline is an initial

1The contents of this chapter has been adapted from the thesis authors works presented in the previous chapters [82,
83, 84].
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step towards more interactive documents that assist readers in absorbing their content by linking

and presenting multiple sources of relevant information.

Finally, in Chapter 5, we have presented an automatic pipeline for answering questions about

charts and generating visual explanations. In a formative study, we find that people regularly

ask visual questions and that visual explanations are both common and effective. Our automatic

question-answering pipeline achieves an overall accuracy of 51% on a corpus of real-world chart

with human-generated questions. Finally, user study confirms that our system is significantly more

transparent than the answers and explanations generated by humans, and that it is on par with the

human-generated answers and explanations for trust and usefulness.



Appendix A

Visual Explanations for Chart

Question Answering: Additional

Information
1

A.1 Formative Study

A.1.1 Words for Referring to Visual Features

From the 277 visual questions we collected prior to the formative study, we identified the words

that people use to refer to the visual features of the charts. We complied these into word lists and

use them to detect mark words, visual attribute words and visual operation words in Stage 2 of our

pipeline. Here, we include the word lists that we compiled (Figure A.1).

A.1.2 Additional Analysis

In addition to the analysis of how often people ask visual/non-visual or lookup/compositional ques-

tions, and provide visual/non-visual explanations, we further analyzed the questions from the forma-

tive study to determine which visual elements of the charts people referred to when asking questions

or explaining their answers visually. Furthermore, we analyzed if people provide visual explanations

when answering visual questions.

Visual Questions 43% of the visual questions included mark words (e.g. ‘bar’, ‘line’). More visual

questions referred to the color attributes of the marks (54%) than the length attributes of the marks

(22%). 22% of the questions referred to the elements on the axes (e.g. the axis itself, label, ticks).

1The contents of this chapter has been adapted from the Supplemental Materials of Kim et al. [82]. This section
provides additional information to Chapter 5.
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Figure A.1: Word lists used in Stage 2 of our pipeline for marks of type ‘bar ’ and ‘line’ (Extension
of Figure 6 in the main paper). The list of words referring to these marks (cyan), the list of words
for referring to the visual attributes of the marks (orange) and the list of words for representing
operations on the marks (green).

Visual Explanations 87% of the visual explanations included mark words. Unlike for visual

questions, more visual explanations referred to the dimension of the marks (42%) than to the color

attributes of the marks (30%). 13% of the questions referred to the elements on the axes.

Explanations to Visual/Non-Visual Questions 60% of the explanations to the visual questions

were visual, whereas 50% of the explanations to the non-visual questions were non-visual. Visual

explanations were slightly more common when the questions were visual, and for both visual and

non-visual questions, people provided visual explanations at least half of the time.

A.2 Additional Details for Explanation Generation

We generate the visual explanations from the lambda expressions via using a series of regex rules in

Stage 3. Here, we provide more information about the rules used for explanation generation. For

specific implementation details, please refer to the released code.

A.2.1 Natural Language Conversion Rules

In Stage 3 step 1, our pipeline converts lambda expressions to natural language using a small set of

rules. Figure A.2 shows a set of rules for this process. Please refer to the released code for specifics

and precedence.
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Figure A.2: Conversion rules from lambda expressions to natural language (Extended version of
Figure 9 in the main paper). The first column shows the name of the rule, the second column shows
the lambda expression and the third column shows the corresponding natural language expression.

Figure A.3: Redundancy cleanup rules for explanations. The first column shows the original redun-
dant expression, and the second column shows the cleaned-up result.

A.2.2 Redundancy Cleanup Rules

We remove two types of redundancies during redundancy cleanup (Stage 3 step 3): (1) repeated

mentions of field names or values (e.g. “‘age’ of the greatest ‘age”’ ) or (2) unnecessary mention of

field or the word ‘data’ (e.g. “‘Country’ ‘China”’ ). Figure A.3 lists some of the regex used in this

process. For the specific regex we use, please refer to the released code.

A.2.3 Encoding Application

In Stage 3 step 5, our pipeline applies the encodings to convert references to field names and field

values in explanations into the visual attributes of the marks to generate visual explanations.

Choosing Color Words Whereas people may use various color names to describe a color they

see, explanations need to be clear and a small set of common color names is all that is needed to
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(a) Hue ranges (b) Saturation and lightness

Figure A.4: How the colors are named in the HSL space. (a) We split the hue space into eight color
ranges. The example colors represent colors in the center of the range with 100% saturation and
50% lightness. (b) For each hue value, we split the saturation and lightness space into black, white,
light and dark versions of the color, and the color itself. Here, we exemplify this with the color
orange (with hue value 30◦). We use ‘brown’ instead of ‘dark orange’ because it is a more commonly
used color name.

distinguish the marks. Because the common color names are better spread out throughout the hue-

space than in the RGB space, we use the HSL color space to assign names to colors. In comparison,

we use RGB color space for matching color words to colors in the chart because RGB color space

has a naturally defined metric that allows distance comparisons to different colors used in the chart,

whereas the HSL color space does not. We split the hue space into smaller slices according to the

color names given by WorkWithColor.com [179]. We split the color ranges of the half-colors (e.g.

red-orange, yellow-green) into two halves and merged them with the closest hue range, resulting in

a total of eight colors (Figure A.4a). For lightness, we named colors with lightness greater than

87.5% as ‘white’ and colors with lightness less than 12.5% as ‘black’. We further split the lightness

space and add the adjective ‘light’ when the lightness is between 75% and 87.5%, and ‘dark’ if it is

between 12.5% and 25%. For saturation, we name colors ‘gray’ if it has saturation less than 12.5%.

If the light or dark shade of the color is often interpreted as a different color, we specially defined

the color name (e.g. ‘brown’ for ‘dark orange’ ). Figure A.4b shows the split for orange.

Word Rearrangement Simply applying the encodings may result in natural language expressions

that could be made smoother by rearranging the words. For example, “length of ‘China”’ can be

smoothed by adding the mark word into “length of the bar for ‘China”’. In order to do so, we apply

a series of regex rules to the resulting explanations (Figure A.5). Please refer to our code for the

implementation details as well as the exact precedence.
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Figure A.5: Word rearrangement rules for visual explanations. First column shows the original
expression that can appear in the visual explanations and the second column shows the reworded
result. The bracketed expressions with two options indicate word choice when the chart is a bar
chart (left) and when the chart is a line graph (right).

A.3 Additional Results: Explanations

Because the explanations generated by our system in Stage 3 are templated conversions of Sem-

pre [127, 187]’s lambda expressions [99], the generated explanations are reasonable as long as the

lambda expression output corresponds to meaningful operations. Here, we share some less mean-

ingful explanations generated because the original lambda expression did not represent meaningful

operations on charts (Figure A.6).

For Q1, our pipeline generates an explanation that simply states the answer ‘Glabron’ without

any operations on it. Observing the lambda expressiom, our system finds the row of the underlying

data table with the ‘variety’ value equal to ‘Glabron’, and obtains the ‘variety’ value of that row,

which is equivalent to just reporting ‘Glabron’. Because the operations in the lambda expression are

very redundant, our system results in removing all the redundant operations and ends up giving the

meaningless explanation.

For Q2, our pipeline generates an explanation with the word ‘index’, which is not defined with

respect to the chart. This is because the lambda expression operates on the underlying data table

and not the chart itself. The lambda expression indicates that it read the variety value of the last row

of the table, which has no correspondence in terms of the chart because the ordering of rows in the

table does not necessarily match that of the ordering of the ‘varieties’ We leave better incorporation
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Figure A.6: Examples of less meaningful explanations generated by our pipeline. The first row
shows the question, and the second row shows the answers generated by our system (red indicates
incorrect) and the correct answer. The third row shows the lambda expression generated by Sempre
and the last row shows the explanation generated by our system.

of such table-specific operations as future work.

A.4 Additional Results for User Study

In addition to the Likert scale measurements of transparency, trust and usefulness, we also measured

how accurately participants determined the correctness of the provided answers, and how quickly

the participants so (Table 5.2).

A.4.1 Accuracy

We did see higher accuracy when we provided answers and explanations generated by our system

(98.8% with visual explanations and 95.0% with non-visual explanations) than when we provided

answers generated by humans (91.3% with explanations and 87.5% without explanations). While

this could be due to our explanations, this could also be due to the wrong answers by our system

being more conspicuous than wrong answers generated by humans. Further study is required to

determine the contributions of these factors.

A.4.2 Time Measurements

Although we measured time taken to determine the correctness of the provided answers, we did

not see a significant improvement in completion times when we presented our visual explanations

(µ = 26.7s, σ = 30.5s) compared to when we presented no explanation (µ = 26.2s, σ = 28.3s,

t(157) = 0.11, p = 0.46), human-generated explanations (µ = 26.0s, σ = 27.5s, t(157) = 0.16, p

= 0.44), or our non-visual explanations (µ = 23.7s, σ = 21.2s, t(157) = -0.72, p = 0.76). Instead,

we saw large variations in completion times in all conditions. This is probably because we did not



APPENDIX A. VISUAL EXPLANATIONS FOR CHART QA: ADDITIONAL INFO 76

instruct the participants to optimize for time. Other factors could be because the time required to

perform the operations to confirm the answers was much greater than the time required to parse the

provided answers and explanations with respect to the provided charts. Additional studies could

help understand how explanations affect the speed at which people parse information.
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visual data exploration with computation of insight-based recommendations. Information

Visualization, 18(2):251–267, 2019.

[36] D3 JavaScript Library. https://d3js.org/, 2021.
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