
 Electronic copy available at: http://ssrn.com/abstract=2596318 

1 

 

DIVISION OF THE HUMANITIES AND SOCIAL SCIENCES 
 

CALIFORNIA INSTITUTE OF TECHNOLOGY 
 
PASADENA, CALIFORNIA 91125 
 
 
 
 
 

 

MULTIPLE ITEMS, ASCENDING PRICE AUCTIONS: AN 
EXPERIMENTAL EXAMINATION OF ALTERNATIVE 
AUCTION SEQUENCES 
 
 
 
DAE HYUN KIM 
HSING YANG LEE 
TRAVIS MARON 
CHARLES R. PLOTT 
RUIJIE D. TEO 
 
CALIFORNIA INSTITUTE OF TECHNOLOGY 
 
 
 
 
 
 
 
 
 
 

 
SOCIAL SCIENCE WORKING PAPER #1406 

 
APRIL 18, 2015 



 Electronic copy available at: http://ssrn.com/abstract=2596318 

2 

 

Multiple Item, Ascending Price Auctions: An Experimental Examination 

of Alternative Auction Sequences 
Dae Hyun Kim, Hsing Yang Lee, 

Travis Maron, Charles R. Plott, Ruijie D. Teo
1
 

California Institute of Technology 

April 2015 

 

 

Abstract 

The paper investigates the revenue and efficiency of different ascending price auction 

architectures for the sale of three items and five bidders. Four architectures are studied:  two 

different sequences of single item auctions, simultaneous auctions with a common countdown 

clock, and simultaneous auctions with item specific countdown clocks.  A countdown clock 

measures the time until the auction closes but resets with each new bid. The environment 

contains independent private values, no uncertainty about own preferences, no information about 

other’s preferences, and a one unit budget constraint. The Nash equilibrium best response with 

straight forward bidding fits both dynamic and outcome data well but the Marshallian dynamic is 

also evident in the adjustment speeds.  When non-unique Nash equilibria exist as in the case of 

simultaneous markets with a common clock, the social value maximizing Nash equilibrium 

emerges as the equilibrium selection. Both total revenue and efficiencies depend on the 

architecture as predicted by the Nash model, with the exception of the independent clocks 

architecture, which performs poorly on all dimensions. 

 

 

1. Introduction and overview 
  

The study is motivated by a simple question. What sequence of auctions should an auctioneer use 

when selling multiple items using ascending price auctions? This question decomposes into three 

questions. (i) What theory will help answer the question for the typical conditions an auctioneer 

might face when posing the question? (ii) What does the theory suggest as an answer? (iii) How 

should one approach finding an answer to the previous two questions? Of course, the answers 

depend on many features of the environment and details of the auction architectures. Our 

approach to the third question is to focus on a specific experimental environment with fixed 

bidder preferences and information. The information environment is similar to one that might be 

faced by an auctioneer who poses the question.  We then vary the auction architectures within a 

class of ascending price auctions and ask which features of theory help explain auction results. If 

                                                 
1 The financial support of the Gordon and Betty Moore Foundation is gratefully acknowledged.  Special acknowledgement is 

given to class members Sarah Brandsen, Wen Min Chen, Rebecca Hu, and Emily Jensen who contributed to the early 

development of the research.  We thank Matthew Elliot, Ben Gillen, Dave Grether, Katrina Scherstyuk, Kirill Pogorelskiy, Fabio  

Michelucci and Robert Sherman for their many helpful comments. 
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successful, the theory or its extensions can then be used to offer answers to the questions for 

specific cases including different preferences, different information, and perhaps different forms 

of ascending price auctions. Or, the theory might indicate what needs to be known in order for 

the questions to be answered. 

 

We will focus on a specific environment. The auction environment we study has the following 

major features: 

 Three distinct items and only one unit of each item is for sale. 

 Five bidders participate with different preferences. 

 A bidder’s own preferences for all items are known with certainty. 

 A bidder can purchase no more than one item so synergies are not an issue.
2
 

 No public information is available about bidder preferences.  Bidders know only their 

own preferences. 

 Bids are anonymous.  Leading bidders know if their bid is leading. 

The details of preferences and preference inducements are discussed in Section 3. 

 

Four different auction architectures are studied.  The common features of all architectures are:  

 ascending bids, 

 a small increment requirement, 

 countdown clock(s) that resets with new bids and resumes a countdown,
3
 

 auction ends when the countdown clock reaches zero, and 

 item allocation to the leading bidder at the time of bid close.  

The differences among the architectures considered are: 

 whether the items are auctioned in sequence,  

                                                 
2
 When synergies and complementarities exist the continuous, ascending price structure can be used successfully 

and efficiently when the bids are packages. For the performance of such an auction in experiments and in the field, 

see Plott, Lee, and Maron (2014). 
3
 The resetting countdown clock has been used routinely in market experiments since the early 1970’s when the 

auctioneer/experimenter used a watch and added seconds to the end time as new bids and asks were tendered.  Later, 

this became a large physical clock that would reset and countdown when the auctioneer pressed a button in response 

to new bids. This became a resetting countdown clock on the computer.  This type of auction ending was called a 

“soft close” as opposed to a “hard close” that ended the auction when a preset time was reached.  Additional types of 

clocks are used in complex auctions, such as combinatorial auctions, in order to encourage the pace of bidding. See 

Plott, Lee and Maron (2014). 
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 whether the auctions for items auctions are conducted simultaneously with a common 

countdown clock, 

 whether the item auctions are conducted concurrently with independent countdown 

clocks, and 

 if auctioned in sequence, the sequence in which the items are auctioned. 

The details of the auction architectures studied are discussed in Section 4. The basic architecture 

employed here has a family resemblance to other types of ascending price auctions. Clock 

auctions (Japanese auctions) are based on prices that move automatically and all bidders are in 

the auction unless they indicate that they are drop out. Rounds auctions proceed in stages in 

which all bidders place bids at the same time.  Auctioneers “call” auctions by announcing prices 

and seeking bidders who will agree to the bid. Open outcry auctions have bidders tendering bids 

as governed by an increment rule and a closing rule. The auctions architectures we study are a 

class often used by auctioneers and are based on an  continuous open outcry feature that prevents 

simultaneous submissions, an increment requirement and a closing rule dictated by the 

countdown clock.    

 

Section 5 is a discussion of theory and models. Our analysis is focused primarily on “market 

level” variables such as prices and efficiency. The basic model tested and applied is a multiple 

item generalization of best response dynamics and resulting Nash equilibria that is routinely 

applied to describe behavior in the single item case. When applied to the sequential auction case, 

the classical model is tested with the bidder with the highest value winning at a price equal to the 

value of the second highest bidder. The theory when applied to the simultaneous auction is more 

complex due to multiple Nash equilibria. The allocation that maximizes the social value (the sum 

of the valuations of item holders) can be supported as a Nash equilibrium of the simultaneous 

auction. The experimental environment used to test the models is outlined in Section 6.  

 

The results of the experiments are contained in Section 7. Strong support exists for the Nash 

equilibria. Support also exists for the best response dynamic model in which bidders exhibit a 

“straight forward” bidding strategy.  Interestingly, and inexplicably, strength of preference 

appears to play a role revealing a Marshallian dynamic in which those who have the greatest 

potential gain are the quickest to act in terms of bidding.  Dynamic exceptions appear as jump 
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bids, which seem to be motivated by attempts to speed the auction and by what we will call 

inertia.  In the simultaneous auctions condition performed under a common clock, the welfare 

maximizing Nash equilibrium emerges as a reasonably accurate model.  

 

The summary of conclusions is Section 8. Both theory and results demonstrate a clear answer to 

our primary question. The auction sequence does make a difference.  However, in order to select 

the revenue maximizing sequence the auctioneer would need enough information about 

preferences to determine the Nash equilibria of the competing architectures. 

 

2.  Related Research  

A long history of theory about behavior of ascending price auctions rests on the hypothesis that 

bidders will follow a “simple”, “straight forward”, “best response strategy”, Nash response or 

Nash best response, when engaged in single item auctions; see Brewer (1999), Milgrom (2000).
4
 

The model holds that given the existing bids on items a bidder will place a bid that maximizes 

profits should it win.  The possible reactions of other bidders are not used in the bid decision and 

indeed, the preferences of others need not be known as is the case as the model is used here. 

While exceptions to the model can exist, especially in the form of jump bidding, the observed 

patterns of bidding and the final outcomes often tend to conform to those of the “straight forward 

bidding” model, and the model naturally extends to explain patterns that appear to be exceptions 

(Salmon, Isaac, and Zillante (2005, 2007).  

 

Whether or not the model naturally extends to predict behaviors of multiple item auctions 

including those where bidders must operate within constraints are not questions that are 

extensively explored in the literature. Early experiments with simultaneous, ascending price 

multiple item experiments were conducted by Plott (1997) as part of the testing of auction 

architectures subsequently used by the FCC in the spectrum auctions.  The auctions studied 

budget constrained bidders using bidding round rules similar to those subsequently employed by 

the FCC. The evidence suggests that convergence was to an efficient competitive equilibrium but 

neither the Nash properties nor the dynamic path were studied. The experiments reported here 

embody both features, multiple items and individual constraints. The models extend themselves 

                                                 
4
 For a review of single item, multiple unit auctions see Kwasnica and Shertyuk (2013). 
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naturally to more complex environments so the question is not so much about what version of 

theory might be applied as it is about how accurate the theory might be when it is applied. 

Extensive tests do not exist in the literature but the results from Plott and Salmon (2004) suggest 

that natural extensions of the model will work well to capture much of the behavior of multi item 

environments. The principle requires that bidders follow a best response when switching from 

one item to another just as they use the principle when deciding whether to place a bid in a 

market with only one item. Given the bids of others, place a bid in order to become the item’s 

leading bidder and do so on profit maximizing terms. 

 

Our basic question is which sequence produces more revenue. The answer to our question seems 

to be suggested by the “revenue equivalence theorem” (Myerson, 1981). Namely, in an 

expectations sense the revenue produced by architectures in a class of environments is expected 

to be the same. We are not addressing that model and do not attempt to test it here or to 

implement conditions under which the theorem might apply. Instead, we explore conditions that 

might be faced by an auctioneer that lacks information about preferences.  The beliefs that 

bidders hold about the values of other bidders or the expectations that bidders might hold about 

item prices are unknown to the auctioneer.  Bidder beliefs about the strategies of other bidders 

are unknown to the auctioneer. In addition, bidders are constrained to purchase only one unit of 

any item and the items are different. Indeed it is known that item sequence can make a difference 

and sometimes in surprising ways, see Grether and Plott (2009).  The revenue equivalence 

theorem is a useful benchmark that supports a need to investigate special cases as explored in 

this paper. 

 

3.  The Basic Economic Environment  

All experiments studied were constructed from a common basic set of parameters.  Experiments 

study the behavior of five types of bidders {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} assigned to five bidders who compete for 

three items {𝐴, 𝐵, 𝐶}. The items are different and only one unit of each item is offered for 

auction. A bidder can acquire at most one item. Thus, a “type” is a list of three numbers assigned 

to a bidder.  The types rotate among subjects over the course of the experiment but the facts of 

rotation and a fixed set of types is unknown to subjects.  For each agent 𝑖{𝑎, 𝑏, 𝑐, 𝑑, 𝑒} and item 

𝑥{𝐴, 𝐵, 𝐶}, consider the quasi-linear utility function of the form 𝑈𝑖(𝑥)  =  𝑉𝑖(𝑥)  + 𝑀𝑖  –  𝑝(𝑥), 



7 

 

where 𝑉𝑖(𝑥) is the value the agent places on 𝑥, 𝑝(𝑥) is the price of the item, and 𝑀𝑖 is the 

money held by the individual, where 𝑀𝑖 is sufficiently large to be non-binding. 

 

Table 1: Basic Preference Parameters 

BASIC 

    

 

type A B C 

 

a 211 70 70 

 

b 130 80 29 

 

c 183 90 43 

 

d 150 43 56 

 

e 225 143 14 

 

Suppose the values of the bidders are as shown in Table 1, which are used as the basic 

parameters for experiments, as will be explained in later sections. A significant feature of this 

table is the allocation that would yield the maximum possible "social value" from the distribution 

of the three items given that bidders can have only one item each. The maximum occurs at 

({𝐴, 𝑎, 211}, {𝐵, 𝑒, 143), {𝐶, 𝑑, 56}) where the notation is {item, type, value}, and the maximum 

possible social value is 410 (= 211 + 143 + 56). This maximum possible value, often referred to 

as the social maximum, plays a role in the computation of performance efficiency, efficiency = 

[surplus at outcome/ maximum possible surplus]. The allocation plays a basic role in the 

selection of an outcome prediction from among the many possible Nash equilibria. 

 

4. INSTITUTIONAL ENVIRONMENT: Auction Architectures and Rules 

We study four architectures that are commonly used. Conspicuously absent is the architecture 

used by eBay, which uses a fixed time for the auction ending. By contrast, all auctions studied 

here remain open as long as the bidding remains sufficiently active, as imposed by countdown 

clocks. 

 

All auctions studied have ascending bids with a minimum increment requirement of 1. The 

auctions are continuous in the sense that a bid can be tendered at any time for any item open for 

bidding. When a bid is tendered in a continuous auction the bidder knows the state of the system, 

all existing bids, at the time of the bid.  A bid higher than the current leading bid for the item 

resets the auction’s countdown clock (20 seconds in these auctions) that reports the time 
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remaining until the auction closes. The auction’s clock then resumes the countdown. Thus, the 

auction only ends when sufficient time has elapsed from the last bid. 

 

An important property of auction architectures is the nature of the sequence with which items are 

offered for bidding. Single item auctions are those in which the items are offered for auction one 

at a time in some predetermined, public sequence. Each of the different possible sequences is, in 

essence, a different architecture. The bidding does not start on an item until the auction of the 

previous auction has closed. Suppose the items are offered in the sequence A, B, C. Then A is 

offered for auction and the bid clock starts counting down. With each bid on A the bid clock 

resets and starts the countdown. When the countdown clock reaches zero, the leading bidder 

wins item A and pays the bid price. After the auction for item A has closed the bidding starts for 

item B. The process continues until all items are sold. 

 

Simultaneous auctions with a common clock have all items open for bidding simultaneously.  

Bids can be tendered at any time for any item. A common bid clock operates to measure the 

remaining time in the auction. The clock resets when a bid is tendered for any item.  When the 

time on the clock reaches zero, the auction is closed and the leading bidder on each item wins the 

item and pays the bid price for the item. 

 

Simultaneous auctions with independent clocks are continuous auctions, each of which is 

controlled by its independent clock. All items are open for bidding at the same time but the bid 

clock on an item does not change until a bid is placed on the item. When the item receives a bid, 

its bid clock resets to a predetermined number of seconds and starts the countdown. As will 

become clear, the size of the reset is an important variable. The clock for a given item is only 

reset by bids on the specific item as opposed to any other item as is the case with the common 

clock. The auction on an item is closed when its bid own bid clock reaches zero at which time 

the leading bidder for the item becomes the winner and pays the bid price. Notice that the 

auctions on items can close at different times. For example, if the pace of bidding on and item is 

steady, then the item remains open for bidding. However, if the pace becomes slow, the auction 

for the item can close while the auctions for other items remain open. 
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5. Models, General Theory and Predictions  

The modelling effort has a limited scope. The basic model is Nash best response model with 

agents who have limited information and follow simple or straight forward strategies. In all 

cases, no information is distributed about competitor preferences or individual competitor 

decisions so the terms Nash best response or Nash equilibrium is appropriate even though it is 

inconsistent with an often used convention of assuming preference information is public when 

applying the Nash equilibrium theory.  We hope that our departure from this convention is not 

confusing. Three forms of the model are applied. The first is an “unconditional” model that has 

bidding based on the parameters specified in the experimental environment and not modified by 

“local” circumstances, the history of play or expectations.  The equilibria are calculated along an 

equilibrium path.  Given the parameters as initially specified all efficiencies, prices and incomes 

can be calculated and predicted.  It is a natural model to apply if nothing is known about events 

that take place during the auction.  For the “unconditional” application, Table 2 contains for each 

set of experimental conditions the predictions of the Nash best response equilibrium model for 

item prices, total revenue from the auction and efficiency of the auction. Since the model 

predicts the winner and the prices, the incomes can be deduced from the known types.  

 

The second version of the model is a “local”, “myopic” or “conditional” version that has bidding 

decisions based on the narrow circumstances that exist for the bidder at the time of decision. 

Previous decision, including errors can shape the decisions at any instant for which the model is 

being applied.  For example, in the sequential auction the winners of previous auctions are not 

present in current auctions and thus the parameters of a current auction are influenced in a 

fundamental way by what happened in previous auctions.  The model is applied to make 

predictions for each auction conditional on what happened in the past.  A “mistake” in the first 

auction can influence the outcome of all subsequent auctions and the model can be applied to 

predict what will happen. Of course, the model has limited uses given the task of deciding among 

auction architectures since the predictions of the model depend on events that cannot be known 

beforehand.  However, it is possible to examine the data after the auction is over to determine if 

the behavior was consistent with the model and that is the application applied here.  
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When applied as a dynamic model, especially for the sequential auctions, an unobserved, 

expectations parameter can be added to the Nash best response.  At each point in the auction, each 

agent 𝑖{𝑎, 𝑏, 𝑐, 𝑑, 𝑒} has some expected, non-negative, gain 𝐺𝑖 from later auctions if the agent 

does not win the current item, based on the private information and the information gained from 

the previous bids. Natural properties to impose on 𝐺𝑖 are that (1) it can fluctuate according to any 

additional information gained from the patterns observed in the bids, that (2) it decreases as each 

item is sold, since fewer opportunities of gain remain, and that (3) 𝐺𝑖 = 0 for the last item, since 

there is no item to be sold after the last item. With the expectations parameter added, each agent 

stops bidding once the price reaches 𝑉𝑖(𝑥) − 𝐺𝑖, as opposed to 𝑉𝑖(𝑥) as predicted by the 

unmodified Nash best response model. While the consequences for the simultaneous auction 

architectures are unknown, when applied to the sequential auction architectures the model suggests 

that the error of the unmodified Nash best response model will decrease with each item due to 

property (2) and that the error from the auction of the last item to be zero due to property (3). 

 

 

 

 

 

 

 

 

 

 

Table 2: Predictions from Nash Model 

 

As shown in Table 2, the equilibrium predictions of the unconditional model will be considered 

for four different auction architectures. The conditional applications of the model will be 

considered in the results section.  The first two architectures are sequences chosen to reflect 

different predictions. The third and fourth architectures are variations in which all items are open 

simultaneously. The details of the rules all architectures will be explained in later sections. Here 

we will just state the differences in the equilibria that result from auction rules that will be 

explained later. Architecture (1): The items are auctioned in the sequence ACB, meaning that A 

  

total 

Revenue 
efficiency 

Price 
Winner 

architecture 
 

model model A B C A B C 

ACB(ABC) 
 

347 0.94 211 80 56 e c a 

BAC 
 

316 1 183 90 43 a e d 

common Clock 

fast response 

independent 

clocks 

 
316 1 

183 90 43 a e d 

Slow response 

independent 

Clocks 

 

213 .88 211 1+ 1+ e b d 
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is auctioned first, then item C is auctioned and then item B is auctioned. Architecture (2): The 

items are auctioned in the sequence BAC. Architecture (3): The auction for all three items is 

opened simultaneously with a “common clock”.  Architecture (4): The auction for all three items 

is opened simultaneously with “independent clocks” that might close the item auction separately.   

 

Architecture (1): Sequence ACB 

For auctions in which the items are offered in sequence, the predictions of the model can be 

easily computed. The individual with the highest value among the set of allowed bidders will be 

the leading bidder and the price will be the value of the agent with the second highest value.  

Since all agents have different value this model leads to a unique (agent, item) pairs as 

predictions for any given sequence for which the items are offered for auction. Total revenues 

will depend on the sequence with which the items are offered.  

 

Architecture ACB. Item A is auctioned first. The Nash model with simple/straight-forward 

bidding holds that the individual with the highest value will win the item and pay a price equal to 

the value of the second highest. Thus, according to the model the item goes to type e, who has a 

value of 225 and pays a price equal to the second highest value of 211 that is held by type a.  

When item C is auctioned next, type e can no longer buy, having bought item A in the first 

auction. Item C will be purchased by type a at a price of 56. Item B will be auctioned to one of 

the remaining types {b,c,d} and will be sold to type c, whose value is 90, at a price of 80, the 

value of type b who has the second highest value of the three remaining bidders. Thus, the 

winning {item, types, personal value and price} for all items are ({A, e, 225, 211}, {B, c, 90, 

80}, {C, a, 70, 56}). The total revenue will be the sum of the item prices, 211+80+56 = 347. The 

predicted surplus (efficiency) is 385 (0.939).  If the expectations term exists in the bidder 

behavior then the errors of the Nash best response model are expected to decrease with each item 

and to become zero for the last item. 

 

Architecture (2) Sequence BAC 

In this architecture, item B is auctioned first, followed by the auction of item A and then the 

auction of item C. The winner of item B is type e who pays a price of 90, which it the value of 

the second highest bidder. Item A is auctioned among the remaining bidders, types a,b,c, and d. 

The winner of item A is type a with a value of 211 and who pays a price of 183.  Item C is the 
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last to be auctioned to the remaining bidders’ types b, c, and d. The winner is type d who pays a 

price of 43. Thus, the outcome of the entire auction in terms of {item, winner, value, price} are 

({A,a, 211,183}, {B,e, 225, 90), {C, d, 56, 43}). The total revenue will be the sum of the item 

prices, 183+90+43 = 316. The predicted surplus (efficiency) is 410 (1.00).   If the expectations 

term exists in the bidder behavior then the errors of the Nash best response model are expected to 

decrease with each item and to become zero for the last item. 

 

Architecture (3): Simultaneous Auctions with Common Clock 

For the common clock auction, there are typically many Nash equilibria for the environment we 

study. An increment requirement exists; only one unit of each item is sold and each agent is 

restricted to at most one item.  An individual that tenders something other than a best response 

can find himself/herself a leader on an item and unable to bid on some other item that promises 

more profit.  

 

The most efficient Nash equilibrium in this environment is closely related to a competitive 

equilibrium which can be found by a linear program. Find the allocation that maximizes the sum 

of the values of those receiving an item subject to no more than one of each item sold and no 

agent receives more than one item. The dual to this optimization problem can be viewed as 

competitive equilibrium prices and under our parameters the allocation and associated prices 

interpreted as bids can support the allocation as a Nash equilibrium to the auction. 
5
 

 

The surplus maximizing allocation as outlined above is ({A, a, 211}, {B, e, 143), {C, d,56}) and 

the competitive equilibrium prices are (183,90,43) for items A,B and C respectively. Thus, the 

predicted revenue is 316. The predicted surplus (efficiency) is 410 (1.00). The predicted outcome 

is the same as that of Architecture BAC but the application of theory is different.  

 

In order to demonstrate that the prediction is a Nash equilibrium (in the best response sense), one 

needs to only check to see if a strategy exists for any bidder to improve his payoff given the bids 

of others. That no improvements exist is demonstrated by the following set of equations where 

V
i
(x) is the value of the item found the Table 1 and P(x) is the equilibrium price of the item.  

                                                 
5
 See Kranton, R. and D. Minehart (2000), Milgrom (2009). See also G, Demange, D. Gale and M. Sotomayor 

(1986) who demonstrate convergence to near a competitive equilibrium by a Nash best response form of auction. 
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Type a:   wins A :  V
a
(A) – P(A) = 28  V

a
(C) – P(C) = 27  V

a
(B) – P(B) = -20 

Type b:  wins 0 : 0  V
b
 (B) – P(B) = -10  V

b
 (C) – P(C) = -14  V

b
(A) – P(A) = -53 

Type c:   wins 0 : 0 = V
c
(A) – P(A) =0  V

c
(C) – P(C) = 0  V

c
(B) – P(B) = 0 

Type d:  wins C : V
d
(C) – P(C) = 13  V

d
(A) – P(A) = -33  V

d
(B) – P(B) = -47 

Type e:  wins B : V
e
(B) – P(B) = 53  V

e
(A) – P(A) = 42  V

e
(C) – P(C) = -29 

 

Given the equilibrium prices, no agent can improve utility by purchasing any item they are not 

allocated. 

 

The predicted outcome is one among many possible Nash equilibria when the auction is 

simultaneous, ascending price with a common clock. What might be called a “support” for  Nash 

equilibria consists of three different outcomes [{A,e,211},{B,c,80},{C.a.57}] ; 

[{A,c,151},{B,e,90},{C,a,57}]; [{A,a,183},{B,e,90},{C,d,43}]. Each of these three serves as an 

index for many different prices that will be Nash equilibriums. Indeed, for each of the equilibria 

in the support set almost every price from the base equilibrium price up to the value of the item 

leader can be part of a Nash equilibrium. The dynamics that might lead to the establishment of 

the alternative (path dependent) equilibria could reflect jump bids, mistakes, bluffs, attempts to 

create expectations in other bidders or other elements of strategic behavior as providing 

appropriate behavior to get to any of these equilibriums; see, Avery (1998); Isaac, Salmon, and 

Zillante (2007); Raviv (2006,2008); Salmon, Isaac, and Zillante (2005,2007). 

 

Architecture (4): Simultaneous Auctions with Independent Clocks 

The independent clock architecture allows auctions to close at different times, which can 

influence revenue and the time at which the clocks stop the auction depend on the speed with 

which bidders shift from one item to another. For example, an item could receive a bid at the 

open of the auction. Its clock would start. If the potential profits from other items remain 

attractive sufficiently long, attracting the bids of other bidders, the clock of the item in question 

can run down and the item sell for the opening bid.  

 

If bidder response is fast, all clocks will remain counting and the auction will behave the same as 

the simultaneous common clock auction. If bidder response is not fast, then the results are 

sensitive to the speed with which they place bids. An extreme case on the impact revenues if 
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bidders are slow can be developed by following the values in Table 1. The auction starts with all 

bidders bidding for item A, which is the most valuable for all of them. As the price of item A 

increases to 50, type b becomes indifferent between bidding 51 on A with potential profit 130-51 

and bidding 1 on item B with potential profit 80 -1. The Nash response requires that b would 

place a bid on B, setting the price of B at 1 and causing the clock for B to set to 20 and count 

down. The next bidder that will be forced away from A to item B would be type e but that event 

will not happen until the price of A reaches 82. If there is as much as a 1 second delay between 

bids, the B clock will reach zero before the price of A will ascend sufficiently to force type e to 

place a bid on B and reset the clock. Thus, the auction for item B would close and the price of B 

would be 1. A similar dynamic could occur at any point in the auction. 

 

The outcome of the independent clock architecture also depends on the unknown speed with 

which bidders react to the bids of others. If bidders react quickly, then the independent clock 

architecture behaves like the common clock and thus has the same equilibrium, revenue and 

efficiency as the common clock and will be called the “fast response” case. If the response of 

bidders to the bids of others is sufficiently slow, an auction can close while bidders who might be 

able to make profitable bids are busy bidding on other items.  At the other extreme is the slowest 

possible bidding while remaining consistent with the best response model, the (slowest) 

equilibrium.   

 

In summary, the simultaneous independent clock architecture has two extremes: The fast 

response time assumption yields: ({A, a, 211, 183}, {B, e, 143, 90}, {C, d, 56, 43}) revenue 316, 

social value (efficiency), 410 (1.00). The slow response time model yields: ({A,e,225,211}, 

{B,b,80,1},{C,d,56,1}), revenue 227, social value (efficiency), 361 (0.88). 

 

6. Experimental Environment 

Preferences, types, and values (increment, clocks -timing and stopping, information). All 

experiments are conducted with five bidders competing for three items, A, B, and C. Only one of 

each of the items is sold and a bidder can win at most one item. The experiments and models are 

built from a base parameter set shown in Table 1. The items are indexed as A, B, and C. Induced 

values are constructed in terms of a unit of currency called “francs” that are worth $0.20 each.   
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Individual incentives are defined in terms of a “type” that defines a value in francs for each of 

the three items. There are five types {a,b,c,d,e}. As shown in Table 1, type a places values 211, 

70, 70 francs on the three items A,B,C, respectively; type b has franc values 130, 80, 29 on A,B, 

C respectively. For any auction, each bidder is assigned one of the five types of incentives. The 

assignment of bidders to types differs from auction to auction with a bidder never being assigned 

the same type twice except on rare occasions near the end of a session. 

 

Table 3: Experimental Design 

session 

Sequence_ types  

allocation to IDs (low 

to high) 

1 ACB_abcde 

2 BAC_ceadb 

3 ACB_bcdea 

4 BAC_ebcad 

5 CClk_cdeba 

6 IClk_eacdb 

7  ACB_abcde repeat 1 

8  CClk_cdeba repeat 5 

 

Experiments were conducted as a series of auction with the architecture and incentives changing 

in each. When subjects logged into the experiment, they were assigned a personal ID that was 

maintained throughout the experiment and known only to the subject. The sequence with which 

the architectures were deployed in the experiments were fixed across experiments and are listed 

in Table 3. The first auction in an experiment was ACB_abcde as listed in the table. This means 

that the items were auctioned sequentially in the order A, then C, and then B. The letters abcde 

means that in this auction the person who logged into the experiment first was assigned type a 

for the auction. The second person who logged in to the experiment was assigned type b for this 

auction, etc. The second auction in an experiment was BAC_ceadb. In this auction, the items 

were auctioned in the sequence B, then and then C and the types were assigned c,e,a ... to the 

first, second and third person who logged in, etc. The auction CClk_cdeba was a common clock 

auction and the auction IClk_eacdb was an independent clock auction. The lower case letters 

indicate the assignment of types to individuals according to original login sequence.  
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The subjects were all students from the California Institute of Technology. The subjects were 

instructed about the auction rules and the methods of tendering bids, the clocks and other 

features of the software by watching a short instructional video. To induce item preferences, each 

subject was assigned a set of three “redemption values” for the items in each period. These 

redemption values were those of the appropriate type for the subject for that auction (refer to 

appendix for experimental procedures and instructions). A total of 45 experiments were 

conducted.  A list of experiments is the content of Table 4.  

 

7. Results 

The price formation paths for the three architectures are illustrated in Figures 1a, 1b and 1c.  

Figure 1a is the time series from a typical experiment in which the auctions are conducted 

sequentially.  The first item auctioned is item A, followed by an auction for item C and then an 

auction for item B.  The time series in each market illustrates the nature of the convergence path 

of the separate auctions including jumps and hesitations as the price moves up to near the 

equilibrium. Figure 1b is an example taken from an experiment in which the auctions were 

conducted simultaneously with a common clock.  The figure illustrates a typical pattern with the 

bidders attracted to market 1 (item A) first because all bidders value it the most.  As the price for 

item A increases the bidding shifts to market 2 (item B) and finally to market 3 (item C). Bidding 

activity shifts among markets until all have equilibrated.  Figure 1c is an experiment in which the 

auctions were conducted with independent clocks.  The earlier bidding is attracted to item A, as 

is the case with other architectures. However, other items receive early bids as a strategy 

reflecting the possibility that the clock would run down and the item would sell cheaply.  The 

time structure reflects lags as bidders in other markets move their activity to reset the clock 

before it runs down and the opportunity to buy is lost.  In some cases the clock does run down 

without new bids resetting the clock and the item is sold cheaply.  Notice, for example, that item 

C is sold at a price of 24 in the simultaneous, independent clock auction of Figure 1c while the 

item is sold for a price of 31 in the sequential auction for Figure 1a, where it is sold second, and 

a price of 42 in the simultaneous auction with common clock in Figure 1b. 
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Table 4: List of all 45 experimental sessions conducted over six days. Experimental sessions with a given 

group of subjects typically lasted a consecutive two hours either in the morning or in the afternoon of a given 

day. Subjects saw items labeled as markets 1, 2 and 3 as opposed to A,B and C so switching of items to 

markets helped mask any similarity of parameters across sessions. 
 

All Experiments (Forty Five Experiments) 

Date Session Architecture Parameters Date Session Architecture Parameters 

20141204 18 Sequential ACB_abcde 20141210 61 Sequential ACB_abcde 

20141204 19 Sequential BAC_ceadb 20141210 63 Sequential BAC_ceadb 

20141204 20 Sequential ACB_bcdea 20141210 64 Sequential ACB_bcdea 

20141204 21 Sequential BAC_ebcad 20141210 65 Sequential BAC_ebcad 

20141204 23 

Common 

Clock CClk_cdeba 20141210 
66 

Common 

Clock CClk_cdeba 

20141204 24 

Independent  

Clocks IClk_eacdb 20141210 
67 

Independent 

Clocks IClk_eacdb 

20141206_1 26 Sequential ACB_abcde 20141210 69 Sequential ACB_abcde 

20141206_1 27 Sequential BAC_ceadb 20141210 
70 

Common 

Clock CClk_cdeba 

20141206_1 28 Sequential ACB_bcdea 20141210 
71 

Independent 

Clocks IClk_eacdb 

20141206_1 29 Sequential BAC_ebcad 20141212 72 Sequential ACB_abcde 

20141206_1 32 

Independent  

Clocks IClk_eacdb 20141212 
73 

Sequential BAC_ceadb 

20141206_3 40 Sequential ACB_abcde 20141212 74 Sequential ACB_bcdea 

20141206_3 41 Sequential BAC_ceadb 20141212 75 Sequential BAC_ebcad 

20141206_3 42 Sequential ACB_bcdea 20141212 
76 

Common 

Clock CClk_cdeba 

20141206_3 43 Sequential BAC_ebcad 20141212 
77 

Independent 

Clocks IClk_eacdb 

20141206_3 45 

Common 

Clock CClk_cdeba 20141212 
78 

Sequential ACB_bcdea 

20141206_3 46 

Independent  

Clocks IClk_eacdb 20141212 
79 

Common 

Clock CClk_cdeba 

20141206_3 47 Sequential ACB_abcde 20141212 
80 

Independent 

Clocks IClk_eacdb 

20141206_3 49 

Common 

Clock CClk_cdeba  
 

  

20141209 52 Sequential ACB_abcde     

20141209 53 Sequential BAC_ceadb     

20141209 54 Sequential ACB_bcdea     

20141209 55 Sequential      

20141209 
56 

Common 

Clock CClk_cdeba  
 

  

20141209 
57 

Independent  

Clocks IClk_eacdb  
 

  

20141209 58 Sequential ACB_abcde     

20141209 
60 

Common 

Clock CClk_cdeba  
 

  

Rotation of types are assigned to subjects in the subject order 1,2,3,4 and 5. Thus, the notation sequential 

ACB_abcde means the item A was sold in market 1, item C in market 2 and item B in market 3. Subjects were 

unaware of the item A,B,C labels used in the experimental design and instead knew the items only by the label of the 

market. Thus, except for the sessions in which the design called for an exact replication, even if a subject was the 

same type in two auctions the relationship would be difficult for the subject to detect because of this rotation of 

labels and because different architectures were employed in all instances. The dates and sessions, (x,y), in which type 

assignments were the same are: {20141206_3:(40,47) (45,49)},{20141209:(52,58) (56,60)}, {20141210: (61,69) 

(66,70) (67,71)}, {20141212:(72,78)(67,79)(77,80)}. Comparisons of the sessions suggest that the masking of types 

between sessions was successful. 
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Figure 1a. Bidding prices vs time of session 28 (sequential ACB). 

 
 

 

 

Figure 1b. Bidding prices vs time of session 70 (common clock). 
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Figure 1c. Bidding prices vs time of session 24 (independent clock). 
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Table 5:  Results model prediction tests, where if p < .05 reject the null that the mean of the 

error is zero. 

    tot Rev     efficiency tot rev efficiency income Theory P 

architecture parameters model Total R efficiency model error error error minus P 

                    

ACB mean 347 328 0.942 0.939 -19.0 0.00366 10.8 5.46 

  SD   16.4 0.0271   16.4 0.0271 13.6 11.0 

  n 16 16 16 16 16 16 80 48 

  
p 

 -     -  
 3.51x10-

4  0.597 
 1.65x10-

9   0.00126 

                    

BAC mean 316 317 0.987 1.00 0.583 0.0128 17.6 -0.194 

  SD   23.4 0.0243   23.4 0.0243 23.0 13.2 

  n 12 12 12 12 12 12 60 36 

  
p 

 -      -  0.933 0.0947 
 1.70x10-

7  0.930 

                    

common C mean 316 318 0.996 1.00 2.11 0.00379 18.1 -0.704 

  SD   3.79 0.0114   3.79 0.0114 19.6 14.4 

  n 9 9 9 9 9 9 45 27 

  
p 

 - 
 

   -  0.1332  0.347 
 1.75x10-

7  0.801 

                    

independent C 
use fast response 
cc model             

  mean 316 282 0.981  1.00 -33.8 -0.0192 24.0 11.3 

  SD   28.0 0.0309   28.0 0.0309 25.4 18.1 

  n 8 8 8 8 8 8 40 24 

  
p 

 -     -   0.0114  0.122 
 5.63x10-

7  0.00580 

 

Result 1.  The order in which items are offered for sale in the single item, ascending price 

auctions conducted in sequence makes a difference to revenue and to efficiency.  The difference 

is on the border of statistical significance reflecting, in part, the fact that the theory predicts only 

a small difference relative to prices (see Result 2). 

 

Support:  

(i) The appropriate statistics comparing revenues are in Table 5. The revenue from the 

sale in the order ACB is (328) which is more than the revenue produced from the order 

BAC, which is (317). The difference is significant at the 0.10 level with p = 0.07.  
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(ii) The appropriate statistics comparing efficiencies are in Table 5. The efficiency of the 

auction of the item order ACB is (0.937) which is less efficient than the order BAC 

(0.987). However, the difference in means is only slightly significant at T = 1.10 and p = 

0.142 or a significant difference of approximately 0.15. 

 

Notice that the higher revenue does not imply higher efficiency.  

 

The next result assesses the auction relative to the purely theoretical Nash equilibrium bidding 

model, where EQ – x = , EQ is the prediction of either the unconditional or the conditional 

application of Nash equilibrium model, x is the observation and  is the error.  The Nash 

equilibrium, when used for modeling purposes requires a tight conformance between theory and 

behavior.  If applied unconditionally to a sequence of auctions, the model has almost zero 

flexibility in accommodating patterns of behavior that deviate from those predicted by the 

theory.  The analysis proceeds through the examination of the unconditional application, a 

conditional application and the addition of an expectations term. 

 

The next two results indicate that the data for all three major measures for the sequential 

architectures are near or are indistinguishable from the predictions of the Nash equilibria of the 

appropriate model. 

 

Result 2.  The patterns of (i) revenues, (ii) efficiencies, (iii) incomes, and (iv) prices of single 

item, ascending price auctions conducted in sequence are explained by the simple Nash best 

response equilibrium model.  The unconditional application of the model is very accurate and is 

supported by almost all measures but the conditional model is even more accurate  because it is 

based on more information. 

 

Support: 

Two different analyses are required to capture different conditions under which the model 

is applied.   The first is the unconditional application of the model. It examines the 

prediction of the model based on initial parameters and the assumption that the auction 

proceeds along the entire equilibrium path of decisions.  The second application is 
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conditioned on the auction behavior at various stages and compares the predictions at 

each instant modified by outcome of earlier auctions. 

 

A. Unconditional application. Perhaps the unconditional applications best capture the 

overall accuracy of the model for the purpose of evaluation of auction architecture. Table 

5 contains the appropriate data for all auctions with the items sold in sequence. Since the 

model applies regardless of the sequence the data for both sequence ACB and sequence 

BAC are comparable. 

 

(i) Auction revenues are approximately the Nash equilibrium. As shown in the table, the 

average of the model for the sequence ACB is -19.0 or with SD 16.4, which is 

statistically distinguishable from zero, p = 3.51 x10 
-4

 but the error is very small, on the 

order of only 5% of the predicted value.  For the auction sequence BAC, the mean error 

for the Nash equilibrium model when applied to total revenue is 0.58 with standard 

deviation 23.4. The hypothesis that the error is zero cannot be rejected, p =0.933.   

(ii) The efficiencies of the allocation of the two sequences are those predicted by the 

Nash equilibrium model.  For the sequence ACB, the error of the Nash efficiency 

prediction is 0.00244 which is close to 0 (p=.796).   The error of the Nash efficiency 

prediction for the sequence BAC is 0.0128, which could be interpreted as marginally 

significant (p=0.094) due to a small SD = 0.024. However, the interpretation is clouded 

by the fact that the error can only be non-negative (the predicted efficiency is 1).  

Nevertheless the data suggest the model is accurate with nine of twelve observations of 

efficiency equal to 1.  

(iii) Individual incomes are accurately modeled by the Nash equilibrium model for both 

the sequence ACB and the sequence BAC. The model error for ACB is 10.8 (SD13.6) 

with p = 1.65 x 10
-9

 and the error for BAC of 17.6 (SD 23.0) with p = 1.70 x10
-7

 are 

distinguishably different from zero.  

(iv) Prices for all three items are near predictions with errors of 5.46 (11.0) and -0.194 

(13.2) relative to the average of predicted prices of 115 for sequence ACB and 105 for 

sequence BAC respectively. The prices for ABC are near the equilibrium levels but the 
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error rate is distinguishable from 0 (p =0.001) but the error rate for BAC is equal zero 

statistically (p = 0.93). 

B. The conditional application of the model measures the accuracy of the model when on 

predictions are conditioned on otherwise unpredicted events.  Specifically, the 

conditional model defines active bidders as those who have not purchased in a previous 

an item in a previous auction.  It predicts that items should always be sold to the agent 

with the top value of active bidders but if not then it will be sold to the agent with the 

second highest value from among the active bidders.  If the agent with the highest value 

decides not to buy, then the buyer should be the bidder with the highest value of those 

remaining.  Which agent has the highest value depends on the bidding that took place for 

the previously auction items.  

The conditional prediction of the Nash best response model is that in any auction in a 

sequence of auctions, the item is sold to either the active bidder with the highest value or 

the active bidder with the second highest value.  An examination of all sequential 

auctions reveals that the prediction holds 100% of the time.  Specifically in the ACB 

auctions, the agent with the highest value wins for A, B and C respectively 81.25%, 

81.25%, and 93.75% and in all cases in which the top value was not the winner, the 

second highest bidder was the winner.   In the BAC auctions, the highest value wins for 

B,A and C respectively 83.33%, 1.00% and 91.66% and if the highest value agent did not 

win then the agent with the second highest value did win.  

 

While the Nash best response model does capture the preponderance of the data in the sequential 

auctions, the difference between the conditional predictions and the unconditional predictions 

indicates the possible role of expectations.  As demonstrated by the success of the conditional 

predictions, bidders who have the highest value for an item and thus should be the winner, have a 

slight tendency to stay in the auction until near the end and then stop bidding and save their 

capacity to buy for a subsequent auction.  The bidding patterns suggests themselves as a measure 

of the expectations term, G, as discussed in Section 5, which should decrease from the first of the 

three items to the last at which point the expectation term should be zero.  
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Table 6: The error of the Conditional Nash best response equilibrium model decreases as the 

auction advances through a sequence of items thus producing evidence of bidding decisions 

influenced by expectations. 

  
 

sequence ACB sequence BAC 

  
 

A C B B A C 

 model error 

mean 8.375 3.937 2.875 9.000 0.583 -3.333 

STDEV 10.500 9.889 7.745 9.954 7.204 7.820 

       
model  mean 10.625 6.188 3.250 9.000 4.417 3.500 

absolute STDEV 8.041 8.573 7.585 9.954 5.567 7.740 

error t (mean = 0) 0.000 0.011 0.107 0.009 0.019 0.146 

 

 

Result 3.  When expectation terms are added to the conditional application of the Nash best 

response model the added terms behave consistent with theory.  The magnitude of expected gain 

from waiting falls with each item in sequential auctions and approaches zero in the final auction. 

 

Support: 

The tendencies of the discrepancies of winning prices from expected strongly supports 

the observation that the error should decrease from the first of the three items to the last 

at which point should be zero. Since we care about the dispersion from the model’s 

prediction, it suffices to compute the absolute differences between the actual results and 

the predicted results. For the ACB-sequence auctions, the average errors were 10.6 for 

the first item (SD 8.04), 6.12 for the second item (SD 8.57), 3.25 for the third item (SD 

7.59). For the BCA-sequence auctions, the average errors were 9.00 for the first item (SD 

9.95), 4.42 for the second item (SD 5.57), 3.50 for the third item (SD 7.74). Notice that 

both sequences show a decrease, satisfying what was theoretically expected about the 

expectation term. Table 6 shows the t-test results. Notice that the t-tests for the first items 

rejects the null hypothesis of mean = 0 even at the strictest conventional level of 0.01. 

Both t-tests for the second items reject the null hypothesis under the 0.05 level, but fails 

to reject the null hypothesis under the 0.01 level. For the third items, the null hypothesis 

cannot be rejected under any conventional level (even for 0.10). This indicates that the 

differences have a tendency to decrease, and that for the third item, it is essentially 

indistinguishable from 0, as was proposed by the characteristic of the expectation term. 
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Result 4. The patterns of (i) revenues, (ii) efficiencies, (iii) incomes and (iv) prices of the 

simultaneous ascending price auctions with a common clock are predicted by the general 

competitive equilibrium model and are supported by the Nash equilibrium model appropriately 

generalized to apply to simultaneous markets. 

 

Support:  

The data are presented in Table 5  

(i) The total revenue produced by the auction is near that predicted by the models. The 

model predicts revenue of 316 and actual revenues are on average 318 with an error of 

2.11 (SD 3.8) or less than 1%.  However, the low variance produces a p = 0.1332, which 

is statistically different from 0 at the 0.10 level.  Models with such accuracy (low 

variance) are most appropriately tested relative to other models.  

(ii) The efficiencies of the allocations are near 100% as predicted.  The error is 0.004 

with p =3.5 which is statistically indistinguishable from 0.  

(iii) Individual incomes are accurately predicted. The error is 18 which is very close to 

zero in a statistical sense, p = 1.75 x 10
-7

 which indicates that the hypothesis of zero error 

cannot be rejected. 

(iv) The hypothesis that prices equal predicted prices cannot be rejected.  The error is -0.7 

(SD 14.4) relative to the average of predicted prices of 105. The p = 0.8 indicates that the 

hypothesis of zero error cannot be rejected. 

 

Result 5. The auctions with independent clocks have lower revenue and lower efficiency than do 

the auctions with the common clock. However, efficiencies and revenue are always higher than 

those predicted by the very slow bidder speeds model.  

 

Support: 

As shown in Table 5, the average revenue from the independent clock auctions is 282 as 

compared with the 213 predicted by the slow bidding model and the 316 predicted by the 

fast bidding model. Efficiencies of the independent clock experiments are 0.98 on 

average as compared with 0.88 predicted by the slow bidding model and 1.00 predicted 
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by the fast bidding model. Of the eight auctions conducted five had efficiencies of 1.00 

and three had an average efficiency of 0.943. 

 

The results above demonstrate that the patterns of winning items predicted by the unconditional 

or the conditional Nash best response theory closely conform to the predictions of theory.  . A 

natural question addresses the degree to which the dynamics of the adjustment is captured by a 

best response model of bidding behavior. In the sequential auction environment, the Nash 

response is not challenged since only one item can receive a bid. All bids appear as Nash best 

responses unless the bid is above item value. However that is not the case when multiple markets 

are operating.  

 

Result 6 and Result 7 ask about the proportion of bids that were a best response in the sense that 

no other bid by the bidder would have yielded a higher potential profit. If a bidder placed a bid, 

was it the best bid the bidder could have placed? Examination of the data reveals two types of 

strategies. The first is a clear choice of a most profitable option. The second suggests a bidder 

who had been bidding on a most profitable option but did not switch bidding immediately when 

the price of some other option changed to produce an alternative bidding strategy. The 

phenomenon is labeled as “inertia” and is measured by a continuation of at least three bids before 

a bid change.  The third are bids that are neither best response nor inertia. Since all markets are 

open in the common clock auctions the expectations of future prices that appears in the 

sequential auctions should not be at work. The proportions of the three bidding patterns are 

shown in Figure 2 for the common clock case and in Figure 3 for the individual clock case. As 

can be seen, a large part of the bidding is a best response but there are substantial differences 

between the common clock and the individual clock auctions. 
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Figure 2. Proportion of Bids that are Best Response (Nash) and Inertial: Simultaneous Auctions 

Common Clock Sessions 

 
 

 

 

Figure 3. Proportion of Bids that are Best Response (Nash) and Inertial: Simultaneous Auctions 

Independent Clock Sessions 
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Table: 7:  Proportion of Bids that are Best Response (Nash) and Inertial: Simultaneous Auction 

Common Clock Sessions 

Session Nash Inertial Unexplained 

23 0.771 0.0482 0.181 

45 0.798 0.101 0.101 

49 0.850 0.0500 0.100 

56 0.596 0.193 0.211 

60 0.622 0.101 0.278 

66 0.811 0.128 0.0612 

70 0.790 0.116 0.0942 

76 0.886 0.0114 0.102 

79 0.924 0.0633 0.0127 

All 0.765 0.0972 0.138 

 

 

Result 6.  The common clock bidding path follows the Nash best response model.  Model errors 

are due to “inertia” or lack of attention. 

 

Support: 

Table 7 contains the proportion of best responses, the inertia responses and the 

unexplained responses in the common clock auctions. Of the bids placed in the 

simultaneous common clock auction, on average 76 of the bids are best response; 9.7 % 

are inertial and 13.8% are unexplained.  

 

While the Nash best response model does capture the preponderance of the data in the 

simultaneous common clock auctions, a proportion is remains unexplained.  The departure from 

equilibrium does not seem to be due to expectations because all prices are public at all times in 

the common clock auctions.  We are at a loss for any explanation other than "inertia".  

 

The next result reflects the facts illustrated in Figure 2 and 3. The independent clocks behave 

differently from the common clocks. Not only are fewer bids consistent with best responses, a 

new motive for bidding appears that is motivated by the nature of the independent clocks. Recall 

each market has its own clock that resets with bids, but this means that a market can close 

leaving some bidders with no purchases if the prices of the other markets increase enough to 

exclude them and would buy the item with the closed market had the market remained open. In 

particular, bids appear to be placed as an attempt to prevent an auction from closing. This can be 
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the case if a bidder is competing for one item but the market for a different item is close to 

closing. The bidder can place a bid in the near- close market, which is quickly beat by the 

competitor in that market, but the bid keeps the auction open while the bidder returns to the 

original market. 

 

Result 7.  The best response model is consistent with more than half of the bids placed in the 

independent clock auctions. However, the best response model explains more data in the 

common clock auctions than in the independent clock auctions. In addition, inertial bids are 

present in the independent clock auctions (but a smaller proportion than in the common clock 

auctions). About 2.8% of the bids appear to be placed to stop a market from closing immediately, 

indicating a type of strategic behavior. Overall, the proportion of unexplained bids is 34% in the 

independent clock auctions (greater than the 13.8% that is the case with the common clock). 

 

Support: 

Table 8 contains the data.  As reported in the Table 8, 56.9% of the bids are best 

response. The inertial bids account for 6.4% of the bids and the strategic bids to keep a 

market open represent 2.8% of the bids. 

Table: 8   Proportion of Bids that are Best Response (Nash) and Inertial: Simultaneous 

Independent Clock Sessions 

Session Nash Inertial Close-prevention unexplained 

24 0.753 0.0225 0.0337 0.1908 

32 0.719 0.0337 0.0337 0.2136 

46 0.688 0.0547 0.0625 0.1948 

57 0.681 0 0.0213 0.2977 

67 0.580 0.0268 0 0.3932 

71 0.510 0.0955 0.0255 0.369 

77 0.373 0.136 0.0169 0.4741 

80 0.263 0.121 0.0202 0.5958 

All 0.569 0.0641 0.0282 0.3387 

 

 

The analysis now turns to a more detailed study of the path of bids. Theory suggests that the 

dynamic path is important for the selection of the actual outcome from among the multiple Nash 

equilibria. Evidence exists that market adjustments can be related to a Marshallian path (Barner, 

Feri, and Plott (2005); and Plott, Roy, and Tong (2013)) in which the relative speed of market 
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actions, bidding in our case, is influenced by potential profitability. That is, at any instant the 

agents with the highest potential profits have the earliest to bid. Our experiments provide an 

opportunity to collect evidence. We examine the bids tendered for the first item auctioned in the 

two sequential architectures ACB and BCA. We examine all bids that are tendered up until the 

first bidder drops out. During that time, when the price is below 130, which is the value of the 

type with the lowest value for the item (type b), the number of bidders is the same across all 

experiments. We measure the bids of each bidder as a proportion of the total of total bids 

tendered during those periods. 

 

The proportion of bids tendered during a fixed period of time is related to speed of bidding. In 

these experiments bids arrive quickly so time between bids is not a useful measure. However, 

proportion of bids placed during the fixed time period is an appropriate measure. 

 

Two approaches are taken. First the data are examined in relation to the magnitude of the 

redemption value (RV) of the item. The question posed is whether the proportion of bids is 

positively related to the redemption value (RV) of the bidder. Secondly we ask if the rank of the 

redemption value (RV) relative to those bidding is related to the relative proportion of bids 

tendered. Figure 4 summarizes the results. It shows that the proportion of bids placed by agents 

in negatively related to rank. As the rank of the bidder in terms of size of redemption value goes 

up the proportion of bids placed by the bidder goes down.   

 

The measures are contained in Tables 9, 10 and 11.  The result is summarized as Result 8. 

 

Result 8. The relative speed with which buyers tender bids is positively related to the relative 

profitability of the bidder. Specifically, the bidder with the largest value places more bids than 

those with values with lesser magnitude. 

 

Support: 

First consider the size of the redemption values (RV). Table 9 contains the average 

proportion of bids tendered by the holder of each of the possible redemption values for 

each of the segments for which measurements of proportion is appropriate. The mean 

(SD) of these averages for the highest value (ranked 1) the second highest (ranked 2) is 
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contained in Table 9.   The close relationship between rank and proportion of bids 

tendered is shown in Figure 4. 

 

Table 9: Mean proportions of total bids in the respective segments and their corresponding 

redemption values (RV). Note that only segments where the number of bidders ≥ 4 is considered 

for consistency and accuracy. 

RV 

BAC_

ItemB

_1-43 

RV 

BAC_

ItemB

_44-70 

RV 

ACB_

ItemA

_1-130 

RV ACB_

ItemA

_131-

150 

RV 

BAC_

ItemA

_1-130 

RV 

ACB_

ItemC

_1-29 

143 0.275 143 0.289 225 0.280 225 0.231 211 0.260 211 0.294 

90 0.201 90 0.283 211 0.165 211 0.222 183 0.146 183 0.306 

80 0.193 80 0.191 183 0.138 183 0.168 150 0.331 150 0.225 

70 0.145 70 0.236 150 0.244 150 0.229 130 0.263 130 0.175 

43 0.187 - - 130 0.164 - - - - - - 

 

 1 2 3 4 5 

1st X 0.00146 0.000540 0.000959 7.73x 10
-5

 

2nd X X  0.323 0.426 0.0706 

3rd X X X  0.604 0.143 

4th X X X X  0.0412 

5th X X X X X  
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Table 10: Rank of RV among those bidding in a segment: largest RV = 1, second largest = 2, 

etc. This table was based from the previous table and used to generate the figure as shown above.  

Bidder rank Average of the mean 

proportions 

Standard deviation 

1st 0.272 0.0231 

2nd 0.220 0.0636 

3rd 0.208 0.0668 

4th 0.215 0.0454 

5th 0.175 NA* 

*since there are only two values, R is not able to compute the standard deviation.  

Table 11:  p-values computed by R. The p-values are based on one-sided t-tests. The first row, 

for example, given the data of bidder rank 1, the null hypothesis is where the average of the 

mean proportions of bidder rank 1 is equal to that of bidder rank 2, and the alternative hypothesis 

is where the average of the mean proportions of bidder rank 1 is greater than that of bidder rank 

2. If p-value is < 5%, we reject the null. 

 1 2 3 4 5 

1st X 0.00146 0.000540 0.000959 7.73x 10
-5

 

2nd X X  0.323 0.426 0.0706 

3rd X X X  0.604 0.143 

4th X X X X  0.0412 

5th X X X X X  
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Figure 4: Pooled data of mean proportions of total bids in the segments for ACB (Items A and 

C) and BAC (Items B and A) where number of bidders ≥ 4.  

 

 

Tables 10 and 11 contain the results of statistical tests. The tests asks if bidders with rank v place 

a higher proportion of bids than bidders with rank v+k. For v = 1 the test of equality is rejected 

for all k. That is, the bidder with the highest value bids more aggressively in all cases that any 

other bidder. The data do not support the hypothesis that the second or third highest value bidder 

bids more rapidly than those ranked lower. 

 

The next result is focused on jump bidding, which has been examined in ascending price 

auctions and presented itself as a challenge to auction theory in general and Nash 

equilibrium theory in particular. Studies of individual bidding behavior have revealed that 

bidders in ascending price auctions deviate from straight forward bidding by submitting 

jump bids. Rather than submit bids according to the minimum increment required, 

bidders tender bids for more than the minimum. Theoretical speculation about the reasons 

for the jump bids has centered on two motivations: (i) signaling a willingness to bid 

above competitors’ values and thus attempt to discourage competitors from bidding and 

(ii) impatience in the sense of saving time and resolving the auction quickly. 
6
 Early 

                                                 
6
 Additional motives are isolated and analyzed by D. Grether, David Porter, and Matthew Shum (forthcoming) who 

conduct a field experiment with on line automobile auctions.  By controlling for levels of potential jump bids, the 

y = -0.0198x + 0.2774 
R² = 0.8126 
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studies suggested that the phenomena would result in diminished auction performance in 

terms of reduced revenue and efficiency (see Avery (1998), Daniel and Hirshleifer 

(1997), and Banks, et.al. (2003).  The theory holds that the jump bidding will cause the 

outcome to be path dependent and end with less efficient allocations that would be the 

case with straight forward bidding. However, a definitive study by Isaac, Salman and 

Zillante (2005) suggests that jump bids are part of a Markovian equilibrium strategy and 

do not have the deleterious effects reported as possibilities in the literature.  A recent 

paper by Ettinger and Michelucci (forthcoming) develops a model in which jump bids are 

motivated by the structure of asymmetric information about payoffs and an incentive to 

prevent bids through which information can be conveyed.
7
 

Our results are consistent with and provide additional support to the conclusions of Isaac, et.al. 

The issues are focused on two explanations for jump bidding: signaling and impatience. We 

examine the data under conditions which signaling can be expected to play no role and under 

conditions under which signaling could have an impact. The absence of asymmetric information 

about payoffs in our environment removes associated strategic behavior as an explanation for the 

jump bids contained in our data. Table 12 contains the relative frequencies of jump bids of 

different sizes for item A in the sixteen ACB auctions when it is the first item auctioned under 

the sequential architecture. The Table also reports the relative frequencies of jump bids for item 

A when it is auctioned under the simultaneous, common clock architecture. Each auction is 

divided into two time segments. The “early” bidding is defined as bids that take place before the 

price reaches 130, the value of the bidder with the lowest value.   Prior to that time, the auction 

will (theoretically) consist of five bidders in the sequential auctions, and after that price, the 

number of bidders begins to shrink. In the simultaneous common clock auctions, all bidders 

typically bid on item A during the first part of the auction. It is the most valuable for all bidders. 

The types of jumps are partitioned into (i)  “no jump”, a case in which the bid was exactly the 

                                                                                                                                                             
study is able to measure an influence of jump bids on auction prices.  However, the mechanism through which this 

takes place is not clear due to the presence of seller strategies that appear as attempts to manipulate prices.  
7
 Ettinger and Michelucci (forthcoming) is a theoretical study of a Japanese ascending clock auction in which 

individual decisions to drop out are public and carry information about own value to some of the participants.   It is a 

model in which jump bids are used as strategies that  prevent the public revelation of dropouts and thus preventing  

competitors from using the information.  While our auction institutions reveal neither the identity of buyers nor the 

number that might be actively bidding, one can imagine that some information about dropouts or the number of 

active bidders remaining might be contained in the speed of bids and the jumps themselves.  
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minimum required; (ii) bids for which the francs above the minimal bid were in the interval 2 

jump  20 and (iii) 20 < jump.  

 

The latitude for the possible influence of jump bids differs between the two auction formats.  In 

the sequential auction, there is little reason to suspect that jump bids can signal values in a way 

that would influence the behavior of competitors. In the sequential auctions, the bidders have no 

place to go because bidders will be able to bid on other items only after the auction for the first 

item is over. Bidders are fully informed about the information they will receive during the 

auction and they are fully informed about the item price until the auction ends. The resetting 

clock provides sufficient opportunity to respond to the final bid. The cost of bidding is low so 

bidders have little incentive to stop bidding until they know they cannot acquire the unit 

profitably. Thus, a presumption exists that under the sequential auction the only incentive to 

jump bid is to terminate the auction quickly. However, under the simultaneous auction with a 

common clock bidders do have the opportunity to bid on other items. A bidder has an incentive 

to change bidding strategies from one item to another if there is reason to believe that bids on the 

first will not be successful. If jump bids carry such signals, bidders could be discouraged from 

bidding on an item and the jumps might be successful. Thus, there is reason to suspect that if the 

motive for jump bidding to end the auction quickly, the jumps will exist in both the sequential 

environment and the simultaneous environments. If jumps are motivated by signaling, they 

would be observed with greater frequency and intensity in the common clock and perhaps the 

independent clock environments.  

 

Result 9.  (i) Jump bidding is observed.  (ii) Observed jump bidding cannot be explained by 

attempts to signal or intimidate other bidders.  (iii) Observed jump bidding is consistent with 

impatience or a desire to speed the end of the auction. (iv) Jump bidding has no effect on final 

prices or efficiency. 

 

Support: 

(i) Jump bidding is observed. Our proportions of jump bids are similar to those observed 

in other auctions, e.g. the same as ISZ, ranging from 30 -50 percent of all bids. 
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(ii) Motivations for intimidation through signaling are removed in the auction for item A 

under the sequence ACB. The increment requirements are minimal. Bidders have no 

alternatives other than bidding on the item at auction that might benefit from an exit prior 

to the end of the auction. As reported in Table 12, the instances of jump bidding are not 

greater when the incentive for signaling exists, as is the case in the simultaneous auction. 

Neither the frequencies nor the magnitudes of jump bids respond to the existence of 

incentives for bidders to discourage the participation of other bidders through a process 

of using bids to signal values.  

(iii) Jump bidding takes place early in the auction. Frequency and size fall as the price 

ascends. This is true of both measures of jump size. The proportion of straight forward 

bidding (non-jump bids) increases as the action progresses for both the sequential auction 

and the simultaneous auctions. Since signaling is eliminated as an explanation the 

remaining explanation is impatience, or attempts to speed the auction. The actions are 

consistent with impatience and a desire to end the auction. 

(iv) There is little or no effect of jump bids on efficiency or price. Of the sixteen auctions 

all but three ended with the item going to the predicted bidder, with an average efficiency 

of .988 of the predicted level and an average price of 202 compared to a predicted price 

of 211. 

Table 12. Proportion of Jump Bids in Sequentially Auctioned Items and Simultaneous Common 

Clock Auction by Size of Jump. For sequential auctions, the jump bidding dynamics of item A (5 

bidders) in ACB was studied. Likewise, for comparison, the jump bidding dynamics of item A in 

both the common clock and independent clock auctions were studied 

  
Sequential 
price  130 
or less 

Sequential 
price more 
than 130  

Common 
clock 
price  130 
or less 

Common 
clock 
price 
more 
than 130  

Independent 
clock price 
130 or less 

Independent 
clock price 
more than 
130 

Non jump (increase =1) 51.7 66.6 66.2 78.5 59.7 73.8 

Small jump (increase 2 up 
to 20) 

34.0 31.2 19.2 20.0 20.8 13.7 

Large jump (more than 
20) 

14.2 2.2 14.6 1.6 19.5 12.5 
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Jump bidding appears to have no effect leading to inefficient or path dependent outcomes. The 

bids may not be Markov, as claimed by Isaac, et.al. but the divergence from complete best 

response bidding seems to be limited to a type of "inertia" in which bids do not stop where 

theory suggests.  Failure to bid according to best response in the sequential auctions could reflect 

a decision to save buying power for a subsequent auction.  As price goes up the likelihood grows 

that a subsequent auction might be more profitable. In simultaneous auctions, the inertia could 

reflect a type of “inattention” in which “excessive” bidding continues on an item because the 

opportunity cost presented by other markets goes unnoticed.  For now, such theoretical 

possibilities remain as speculations fueled only by hints in the data. 

 

8. Summary of Conclusions 

The auction architecture has an impact on both revenues and efficiencies. Higher revenue when 

using an architecture does not mean the auction operated with higher efficiency. The 

simultaneous ascending auction with a common clock consistently has high efficiency. However, 

the simultaneous ascending auction with common clock need not produce the highest revenue. 

The overall results suggest that the simultaneous auction with independent clock should be 

avoided.  The independent clock architecture is dominated by the common clock in all 

dimensions of comparison. 

 

Perhaps the most important result is that the best response Nash equilibrium model is a very 

powerful predictor of performance in all auction architectures and a strong predictor of all 

performance measures studied. The answer to the question about which architecture an 

auctioneer should use is that the auctioneer should seek such information as needed to determine 

what the Nash equilibrium model predicts. A good bet, from the point of view of the auctioneer 

is that the auction will follow a best response path and end up at the Nash equilibrium (unless 

expectations can be manipulated).  

 

Two additional results are worthy of note. First, a tendency exists for the agent with the largest 

potential profit to tender bids more quickly than other bidders. This tendency has been observed 

in other forms of markets and is recognized as the Marshallian path. The fact that it is observed 

in our experiments suggests it is guided by a principle that remains inexplicable. Secondly, we 
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observe jump bidding, which is inconsistent with a best response dynamic but the phenomenon 

should be interpreted as a sequence of rapid bids intended to speed the auction as opposed to 

signals or attempts to follow some form of psychological intimidation. The broad patterns of 

dynamics are largely best response and the outcomes are those predicted by the Nash equilibrium 

model. Thus, while the best response model can be rejected in a literal sense, the system itself 

has many of the characteristics that would be expected if the best response model was followed 

perfectly by the bidders. 

 

  



39 

 

REFERENCES 

 

Avery, C. (1998) “Strategic Jump Bidding in English Auctions,” Review of Economic Studies 

65:185-210. 

Banks, J., M. Olson, D. Porter, S. Rassenti, and V. L. Smith (2003) “Theory, Experiment and the 

Federal Communications Commission Spectrum Auctions,” Journal of Economic 

Behavior and Organization 51(3):303-350. 

Brewer, P. (1999) “Decentralized Computation Procurement and Computational Robustness in a 

Smart Market,” Economic Theory 13:41-92.  

Daniel, K. and D. Hirshleifer (1997) “A Theory of Costly Sequential Bidding,” Mimeo, 

University of California - Los Angeles. 

Demange, G., D. Gale, and M. Sotomayor (1986) “Multi-Item Auctions,” The Journal of 

Political Economy 94(4):863-872. 

Ettinger, D. and F. Michelucci (forthcoming),“ Hiding Information in Open Auctions with Jump 

Bids”, The Economic Journal.  

Grether, D. and C. R. Plott (2009) "Sequencing Strategies in Large, Competitive, Ascending 

Price Automobile Auctions" Journal of Economic Behavior and Organization, 711:75-

88. 

Grether, D., D. Porter and M. Shum (forthcoming), “Cyber-shilling in Automobile Auctions: 

Evidence from a Field Experiment”, American Economic Journal: 

Microeconomics.  

Isaac, R. M., T. Salmon, and A. Zillante (2005) “Experimental Tests of Alternative Models of 

Bidding in Ascending Auctions,” International Journal of Game Theory,33:278-313. 

Isaac, R. M., T. Salmon, and A. Zillante (2007) “A Theory of Jump Bidding in Ascending 

Auctions," Journal of Economic Behavior and Organization, 62(1):144-164. 

Kranton, R. and D. Minehart (2000) “Competition for Goods in Buyer-Seller Networks,"  

Review of Economic Design, 5:301-331.  

Kranton, R. and D. Minehart (2001) “A Theory of Buyer-Seller Networks," American Economic 

Review, 91(3):485-508. 

Kwasnica, A.M. and K. Sherstyuk (2013), “Multi Unit Auctions”, Journal of Economic Surveys, 

27(3),461-490.  

Lucking-Reiley, D. (1999) “Using Field Experiments to Test Equivalence Between Auction 

Formats: Magic on the Internet,” American Economic Review, 89:1063-1080.  

Milgrom, P. R. (2000) “Putting Auction Theory to Work: The Simultaneous Ascending 

Auction,” The Journal of Political Economy 102(2):245-272. 



40 

 

Milgrom, P. (2009) “Assignment Messages and Exchanges,” American Economic Journal: 

Microeconomics, 1(2):95–113. 

Myerson, R. B. (1981) “Optimal Auction Design,” Mathematics of Operation Research, 6:58-73.  

Plott, C.R.(1997) “Laboratory Experimental Testbeds:  Application to the PCS Auction.”  

Journal of Economics & Management Strategy, 6(3):605-638. 

Plott, C.R., H.Y. Lee and T. Maron (2014), “The Continuous Combinatorial Auction 

Architecture”, The American Economic Review 104(5):452-456.  

Plott, C. R. and T. C. Salmon (2004) “The Simultaneous, Ascending Auction: Dynamics of Price 

Adjustment in Experiments and in the U.K. 3G Auction,” Journal of Economic Behavior 

and Organization 53(3):353-383. 

Plott, C. R., N. Roy, and B. Tong (2013) "Marshall and Walras, Disequilibrium Trades and the 

Dynamics of the Equilibration in the Continuous Double Auction Market," Journal of 

Economic Behavior and Organization, 94:190-205. 

Raviv. Y. (2006) “New Evidence on Price Anomalies in Sequential Auctions: Used Cars in New 

Jersey,” Journal of Business and Economic Statistics, 24(3):301-312,  

 

Raviv, Y. (2008) “The Role of the Bidding Process in Price Determination: Bid Jumps in 

Sequential English Auctions,” Economic Inquiry, 46(3):325-341. 

Salmon, T., M. Isaac, and A. Zillante (2005) “An Experimental Test of Alternative Models of 

Bidding in Ascending Auctions,” International Journal of Game Theory, 33(2):287-313. 

Salmon, T., M. Isaac, and A. Zillante (2007) “A Theory of Jump Bidding in Ascending 

Auctions,” Journal of Economic Behavior and Organization, 62(1):144-164.  

http://dx.doi.org/10.1007/s00182-005-0203-y
http://dx.doi.org/10.1007/s00182-005-0203-y
http://www.springerlink.com/app/home/journal.asp?wasp=2166f12f8de94e968daaa5f8a88f9654&referrer=parent&backto=linkingpublicationresults,1:101791,1
http://www.elsevier.com/locate/issn/01672681


41 

 

APPENDIX 

 

Auction Architectures 

Rules: 

Talking and collaborating were strictly prohibited during the auctions. Before each 

auction began, the participants were shown a brief (~3 minute) instructional video explaining the 

rules and mechanisms of the auction. Three items were open for bidding during each period. In 

the first four periods, the items were opened sequentially. In other words, only one item was 

available to bid on at any given time. In the next two periods, the items were opened 

simultaneously. That is, all three items were available to bid on at the same time, and subjects 

were allowed to bid on the items in any order. The simultaneous rounds either had a common 

clock governing the bidding time or individual clocks for each item. Most of the auctions then 

concluded with a repeat of the first and fifth period. In each period, each subject was only 

allowed to win one item of the three total items. During the simultaneous periods, once a subject 

was the leading bidder on an item, he/she was not allowed to bid on any other item. The unit of 

currency in the auctions was the “Franc.” Each Franc was equivalent to $0.20 to $0.30. The 

subjects were informed of the currency exchange rate before the auctions began. A subject’s 

earnings for any item was defined as the difference between the redemption value for the item 

(induced in the subject, see later discussion) and the price paid (bid value).  

 

Bidding mechanism:  

 At the very top of the auction page was the subject’s ID number. Immediately below was 

the current period of the auction. The redemption values were given in a separate window after 

clicking on the link in the top right hand corner of the page.  
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Figure A1. Screenshot of auction page. The locations of ID #, period and redemption values are 

highlighted in yellow.  

 

 
Figure A2. Redemption values for one period. These values are obtained by clicking on the 

“Redemptions Values” link in the top right corner of the auction page.  

 

To place a bid, the subjects first had to click on the column to the right of the item such that it 

was highlighted in yellow. The subjects could then modify the bid value (in increments of 1 

Franc) by clicking on the “+” and “-” signs to the right of “Price.” To place a bid, the subjects 

then clicked on the “Place Bid” button. The current highest bid and the time remaining until each 

item closed were given in the column to the right of the item number. Each time a bid was placed 

on an item, the timer was reset to 20 seconds. During the simultaneous, common clock auctions, 

the time remaining was given at the top of the auction page instead of in the column to the right 

of the items. Once an item’s auction was closed, the column to the right was highlighted either in 

red or gold, indicating whether the subject won the item (gold) or did not win the item (red). 

There was a short pause between each individual item auction. The subjects were verbally 

notified when the next item was open for bidding.  

 

[Screen shot – right column in yellow, time remaining and common clock time, red vs. gold] 

 


